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1 p-adic expansions

We'll be following Engler and Prestel’s Valued Fields. All rings are commutative with identity.

Office hours are Tuesdays 2:00-4:00.

Assignment questions should be done solo.

We begin with an analogy between Z and C[z]. Note that both are UFDs with respect to the representative
primes (primes that represent the class of its multiples by units): in Z we have the positive prime numbers,
and in C[z] we have the monic irreducible polynomials z — a for a € C (since C is algebraically closed).

In Clz], elements can be viewed as functions: given f € C[z] we get f: C — C given by a — f(a). (Really,
this is the projection C[z] — C[z]/(z — a) 2 C.)

In Z, we want to think of elements as functions on the set of positive primes. If f € Z, we define
f(p) = f+pZeZ/pL.

In Clz], given h = g € C(z) (the fraction field) and given a € C, as long as g(a) # 0 (i.e. z —a{g(2)), we

can declare h(a) = ggz; e C.

In Z, given h = % € Q, if pt g then we can set h(p) = (f + pZ)(g + pZ)~' € Z/pZ.

In C[z], we get Taylor series expansions by differentiating; given h = 5 € C(z) and a € C with g(a) # 0,
the Taylor series expansion of h at a is the formal power series

Z a;(z —a)’
i=0

where )
r9 (a)
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a; =



Note that for all n we have
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|
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ai(z —a)® (mod (z —a)")

I
<

(working in C[2]/(z — a)", and interpreting h as (f + ((z —a)"))(g + ((z — a)")) "t € C[z]/(z — a)™).
In Z, given f € Z, we want ag, ay,as,... € {0,...,p— 1} such that for all n we have

n—1
f= Z a;p’  (mod p")
i=0
We do this by writing

f=ao+ fip
fi=a1+ fop

where 0 < a; < p. Then, for example

f=ao+ (a1 + fop)p = ao + a1 + fop®

and f = ag + a;p (mod p?).
We thus have found ag, ay, ... such that

f=ao+ap+ap*+---4an_1p" ' (mod p")
Definition 1.1. We call the formal sum Z;ﬁo a;p’ the p-adic expansion of f at p.
Remark 1.2. ag = f(p).

Continuing the analogy, we think of ila; as the i*" derivative of f at p.

Definition 1.3. We define the p-adic integers, denoted Z,, to be the set of formal sums Y ;= a;p’* where
each a; €{0,...,p—1}.

We have thus defined a map Z — Z,.

We can extend this to h € Z,) = { % :p{g} C Q: for each n there are ag, . ..,a,—1 € Z/pZ such that
(F+®)-(g+ @) t=ay+ap+- -+ an_1p" L+ (p") in Z/p"Z. The a; do not depend on n; we then
declare that Z:io a;p" € Z, is the p-adic expansion of h = 5 € Z(p) at p. Hence we have defined a map
Z(p) — Zp.

Proposition 1.4. This map is injective.

Proof. Suppose 5—1, ;% € Zpy € Q have the same p-adic expansion. (i.e. they have the same coefficients.)

Then for all n > 0 we have
fi _ fe n
=== (mod p")
g1 g2
in Z/p"Z; S0 gofi = fogn (mod pn)’ and p" | gofi — fagr for all n. So g2f1 = fog1, and ‘(J% = ,t%'
[J Proposition 1.4

To summarize the analogy:

Z | Cl7]
primes {z—a:aeC}=C
h € Zyy yields h(p) = h (mod p) | h € C(z) yields h: C — C with a + h(a) if a is not a pole
S ap €7, 220 M54z — a)f € €[z~ a]
Zy, Cl[z — d]]



We have previously defined an injection Z,) — Z,; what of arbitrary h € Q, perhaps not in Z(p)7 In the
case of complex functions, we have a Laurent series; we aim for the same thing here. Write h = ﬁf where

5 € Z(py and m > 0. The “p-adic expansion of h” should then be

Lo

H/—/
p-adic
expansion of f

Definition 1.5. Thus motivated, we define the p-adic numbers, denoted Q,, to be the set of formal series
o0
> '
i=—m
where m > 0 and each a; € {0,...,p—1}.

Remark 1.6. We have a natural embedding Q — Q,, given by mapping h = %5 (where p 1t g) to

P
(oo}
i=0
where
o0
> '
i=0
is the p-adic expansion of g

Definition 1.7. We call this the p-adic expansion of h € Q.

2 Ring structure

We add a ring structure by projective limits.
For n > 1let R, = Z/p"7Z. We then have ring homomorphisms ), : R, 11 — R, given by a + p"*!Z s
a + p"Z. (This works since p"™17Z C p"Z.) We let R = @Rn be the projective limit of the R; and the \;,
namely
R={(rn:n>1):r, € Ry, A\u(rny1) =1y for all n}

One can check that this is a subring of [],, Rn.
This satisfies a universal property: there are surjective ring homomorphisms 7, : R — R,, induced by the
projection maps on [[,, R,, such that for any ring S equipped with ring homomorphisms e, : S — R, such

that the following diagram commutes:
/ ie"“

R, <; Rn+1

for all n, there is a unique ring homomorphism 7: S — R such that each e, factors through =; i.e. the
following diagram commutes:

S --"-+R
[
R,

(One should check this universal property.)



Proposition 2.1. The map Z, — R given by mapping

o0

i
E a;p
i=0

to (rp :m > 1) where rp, =ag+ai1p+ -+ + qu1p" ' +p"Z € Z/p"Z = R, is a bijection.

Proof. Tt is clear that the codomain is indeed R.
The key fact, which we have previously outlined, is that given 0 < f < p™ we have that f can be written

uniquely in the form

f=a+ap+--+a,1p"!

where ag,...,a,—1 € {0,...,p—1}.
For injectivity, suppose

o0
r= Z a;p' €7
i=0
n—1
Tn = Z aipl
i=0
oo
s = Z bip' €Z
i=0
n—1
Sn = Z bipl
i=0

If r,, = s, (mod p™) for all n, then since r,, and s, are < p™, the key fact yields that a; = b; for all 1.
For surjectivity, suppose (r, :n >1) € R = @Z/p"Z. By the key fact, each r,, can be written

n—1
Tn = 0Q0n + A1 np + -+ Gn_1np

where each a;; € {0,---,p—1}. But A\y(rpy1) = 7, 80 @i i1 = i for alln > 1 and all 0 <@ < n; ie.
a; n does not depend on n. We thus get ag,as,az,... € {0,...,p— 1} such that for all n we have

Tn = Qg + ap + -0+ an—lpnil (mOd pn)

So
o0
Z a;— (rp:n>1)
=0
and our map is indeed surjective. O Proposition 2.1

We thus get an induced ring structure on Z, where

0:§§Omi
=0

1:1+§3%i
=1

Multiplication is given by
(S o) (Sow) = e

if and only if for all n > 1 we have

n—1 n—1 n—1
(Z aiﬂ) : (Z bipi> = Z cipt (mod p")
i=0 i=0 i=0



Addition is given by
D aipt +) bipt =) eip’

if and only if for all n > 1
n—1 n—1 n—1
dap'+ > bip' =) ep' (modp")
i=0 i=0 i=0

Note that the mapping Z — Z, — R is given by

00 n—1
[ Zaipi H(Zaipi—&-p"Z:nzl)
i=0

i=0
——

p-adic expansion
so that
n—1
f= Z a;p’  (mod p")
i=0
We identify Z,) C Z, = R.
Proposition 2.2. Z, is an integral domain.

Proof. Well, R = l'&an. Suppose we had r,s € R both non-zero. Say r = (r, + p"Z : n > 1), where
rn € {0,...,p" —1}. Then since  # 0, we have r, + p"Z # 0 for some £ > 1; hence p* { ry, and hence p { r,
for n > ¢ (since for n > £ we have r, = r;, (mod p*)). Likewise with s, there is m > 1 such that for all n > m
we have p™ { s,. Now, 78 = (rps, +p"Z:n > 1); let N ={+m. Then if rysy + p"Z = 0 in Z/p"Z then
pN | rysn. But N > ¢, so p* {ry; so p™ | sy, a contradiction since N > m. 0 Proposition 2.2

Lemma 2.3. The units of Z, are exactly the sums

oo
E a;p"
i=0

where ag # 0.

Proof. Let R, = Z/p"Z and A\, : R,+1 — Ry; then Z, = @Rn, as before.

Claim 2.4. An element in @Rn is invertible if and only if it is invertible in [], Ry.
Proof.

(=) Immediate.

(<= ) Suppose r € ]'ﬂan and s € [, R, with rs =11in [],, R,; we wish to show that s € lim R,,. Note
that rs = 1 if and only if for all n we have r,s, = 1 (where r = (r,, : ¢ > 1) for r,, € R,,, and likewise
with s). Fix n > 1. Then 7418541 = 1 in Rpg1, 80 Ap(Tn+1)A\n(Snt1) =1 in R,. Since r € @Rn, we
have that A\, (rn11) = . S0 rAn(Snt1) = 1in Ry; 80 Ap(Sp+1) = Sn by uniqueness of inverses in R,,.
So s € Y&an, as desired. [0 Claim 2.4

So Y~ a;p’ € Z,, is invertible if and only if ag + a1p + -+ + an—1p" ! is invertible in Z/p"Z for all n > 1,
which occurs if and only if pfag + -+ + a,_1p"*, which occurs if and only if ag # 0. 0 Lemma 2.3

Corollary 2.5. Z,, is a local ring with mazimal ideal pZ, and residue field Z/pZ.
Proof. Note that

o0 ) o0 )
p (Z az‘pl> = Z aipzﬂ
i=0

1=0



since for all n > 1 we have
plao+---+an1p" ) =ap+---+an1p" =aop+---+a,op"”"  (mod p")
Hence
o0
Py = {Zaipzzao—o}
i=0
which is just the set of non-units. Hence pZ, contains every proper ideal and is thus the unique maximal

ideal.
For the residue field, note that we have

1 Ly = I'LHZ/p"Z — Z/pZ =T,
Z a;p' — ag + pZ
Now, 1 is a surjective ring homomorphism with kernel pZ, (since ag < p); hence Z,/pZ,,. O Corollary 2.5

Notation 2.6. We use Z, to denote the p-adics, Z,) to denote the localization of Z at pZ, and IF;, to denote
Z/pZ.

T

Lemma 2.7. Every element of Frac(Z,) can be represented in the form i

for some r € Zy,.

Proof. Given

> aip’
S bip € Frac(Z,)

let m > 0 be least such that b, # 0; i.e. bg =by =--- =b;,_1 = 0. So
> bip' =byup™ + bmap™ =™ | b+ b ap £
unit of Z,

We can thus write > b;p? = p™r~! for some r € Zp; hence

>ap' _ry ap’
> bip? pm

as desired. ] Lemma 2.7

Recall we defined
Qp:{ Z aipi:m>0,0<ai<p}

We thus get a map Q, — Frac(Z,) given by

> , > gpttm
> apt vy St

i=—m

This is a bijection that is the identity on Z,; this thus induces a field structure on Q,.

3 Metric and topological structure

We give a third (and final) characterization of the p-adics that will induce a metric and topology; we now
follow chapter 1 of the book.

We use the p-adic absolute value: the idea is that we can construct @, from Q very much as we construct
R from Q (i.e. as a metric completion), but using a different absolute value on Q.

Fix a prime p.



Definition 3.1 (p-adic absolute value on Q). Suppose 7 € Q. If r = 0, we set [r|, = 0. If 7 # 0, we write
r =p"§ where a,b € Z, pta, ptb, and 1 € Z; we then set \r|p = exp(—n) > 0.

Remark 3.2. Note that an integer gets smaller in |-| p the higher the power of p that divides it.

Remark 3.3. Given r € Z, with 7 = " a;p’, we can consider the sequence of integers (a;p’ : i > 0); this then
converges to 0 in || .

Definition 3.4. Suppose K is a field. An absolute value on K is a function |-|: K — R satisfying the
following:

1. |z| =0 < z=0.
2. |wy| = [yl
3. |z +yl < x|+ [yl
Proposition 3.5. ||, is an absolute value on Q.

Proof. (1) and (2) are clear; we check the triangle inequality. Suppose x,y € Q; say

_ 0
1‘—pb

C
— =
y=r'

where p t abed. So |z], = exp(—#0) and [y|, = exp(—7). Assume without loss of generality that 6 < ~. Then

pPad + p?ch o ad+p b
bd bd
Hence
|z +y|, < exp(—0) = max(exp(—0), exp(—y)) = max(|z|,, [y|,) < ||, + [y,
and |-|, satisfies the triangle inequality. [0 Proposition 3.5

In fact, we showed a stronger property: we showed that
|z +yl, < max(|z],, |y[,)
Definition 3.6. Such absolute values are called non-Archimedean.

So (Q,[-]) is Archimedean, and (Q, ||,) is non-Archimedean; these turn out to be all the absolute values

on Q.

Proposition 3.7 (1.1.1). Suppose (K, |-|) is an absolute valued field. Then (K, |-|) is Archimedean if and
only if X = {|n| :n € Z} is unbounded in R>q.

Proof. We note that ,
[ =1-1] = [1[3] = [1]

and hence that |1| = 1. We further note that
2
=1 =1(-1)% = 1] =1
and hence in general that |—xz| = |z|

(<=) Suppose (K, |-|) is non-Archimedean. Then |n| = |1+ --- 4+ 1| <max{|1],...,|1|} = 1;s0 |n| < 1.
We get a similar result for n < 0.



(=) Suppose X is bounded by C' € R+q. Suppose n € N. Then

z+y" = |(z+y)"|

()]
>I()

n
n . .
< 3 Clafly"

IN

[y

i< ) Clmax(|zl, ly)")
= (n+ 1)C(max(|z], [y]))"
So |z 4+ y| < max(|z|, |ly]) /(n+1)C. But /(n+1)C — 1 as n — o0; so |z + y| < max(|z|, |y]).

0 Proposition 3.7

Now, if (K, |-|) is an absolute valued field, then we have a metric on K defined by dist(x,y) = |z — y|,
which in turn induces a topology on K. The basic open sets will be

B.(a)={beK:|la—bl<e}
fore >0real and a € K.

Lemma 3.8. |-|: K — R is uniformly continuous. In fact, if x,y € K then

[z = lol|_ <l ]
Proof. Well,
2| = o —y+yl < |z —yl+ [yl
so |z| — |y| < |z — y|. Similarly, we get |y| — |z| < |y — z| = |z — y]. O Lemma 3.8

3.1 Completions
Suppose (K, |-|) is an absolute valued field.

Definition 3.9. A sequence (a, : n > 0) in K is Cauchy if for every £ > 0 there is an N € N such that
|an, — am| < € for all n,m > N. It converges to b € K if and only if for every € > 0 there is N € N such that
lan, —b| < e for all n > N.

Remark 3.10. By the triangle inequality, convergent sequences are Cauchy.
Definition 3.11. We say (K, |-|) is complete if every Cauchy sequence is convergent.
FEzxzample 3.12.

e (Q,]]) is not complete: take any sequence of rationals converging to an irrational.

n—1

e (Q,][,) (for p prime) is not complete. Let s = S aip' € Zy; forn > 0let s, = ap+a1p+---+an_1p
Then (s, : n > 0) is Cauchy in (Q, [-[,) since given m < n we have

‘Sn - Sm|p = |ampm +-+ anflpn71|

p
= |pm(am —|— am+1p + e + an_lp’n—l—m)|p
< exp(—m)
-0

Similarly, if s € Q, and the s,, are the partial sums then (s, : n > 0) is Cauchy.



Egercise 3.13. (sn :n > 0) will converge in (Q,|-[,) if and only if s € Q.

So for s € Q, \ Q we get a non-convergent Cauchy sequence by looking at the partial sums.

Ezercise 3.14. s =Y a;p’ € Q, is in Q if and only if (a; : i > 0) is eventually periodic.
Theorem 3.15 (1.1.4). Given an absolute valued field (K, ) there is a complete absolute valued field (K, ﬂ)
with a field embedding v: K — K satisfying the following:
1. \@| =|z| for allz € K.
2. u(K) is dense in K.

3. The universal property: if (Ki,|-|,) is another complete absolute valued field with v,: K — K a field
embedding satisfying |v1(x)|, = |z| then there is a unique continuous field embedding p: K — K such
that the following diagram commutes:

R-f ki
1
K

If 11(K) is dense in K, then ¢ is an isomorphism. We call (K, |A|) the completion.

Proof. This imitates the construction of R from Q. Let C be the set of all Cauchy sequences in (K, |-]).
Claim 3.16. C with coordinate-wise operations is a commutative ring with unity.

Let
/\f:{(an:nZO)EC:nlLH;O|an|:0}
Note that by uniform continuity if (a, : n > 0) € C then (Ja,| : n > 0) is Cauchy in R; since (R,|]) is
complete, we get that (Ja,|: n > 0) converges.
Claim 3.17. N is an ideal of C.
Claim 3.18. If (a, : n > 0) € C\ N then (la,| : n > 0) is bounded away from 0 eventually.
Claim 3.19. N is a mazimal ideal.

Define K = C/N; then K is a field. Given o € K, say a = (an : n > 0) + N for (a, :n > 0) € C, set

|/a\| = lim |a,|
n—oo

One checks that this is a well-defined absolute value on K. We now have ¢: K — K given by x — (z:n >
0) + A represented by the constant sequence. One checks that this is a field embedding preserving absolute
value.

Claim 3.20. «(K) is dense in K.
Claim 3.21. (K, is complete.

Claim 3.22. (I?,A) satisfies the universal property.
0 Theorem 3.15

Consider now the completion of (Q, |-|,). Let R be the ring of all Cauchy sequences in (Q, |-|,,); let M be
the set of null sequences, and let @ =R/M.
Remark 3.23. Given (a, : n > 0) € R, if we let a = (a, :n > 0) + M € Q, then

laf, = nh_)rrgo\an\p eR



Remark 3.24. Either a = 0 or (|an|, : n > 0) is eventually constant in R (since |a,|, is an integer power of e).

We now show that @ =Qp. Let
S=B1(0)={aeQ:fa], <1}

Exercise 3.25. S is a subring of @
Lemma 3.26. S is the closure of Z C @
Proof. We first note that Z C S since if r € Z then

Irl, =1Irl, =exp(-n) <1
where p" | r and p"*! { r. Suppose now that (x, : n > 0) is a sequence in Z with

lim z, =a€Q
n—oo

Then
n— oo

1 Z |x77z|p — |a|p

Hence |/a\|p <1l,and ax € S.

Conversely, suppose a € S. If @ = 0, then « € Z; assume then that a #0. Say a = (r,, :n > 0)+ M € @;
then e
nll_?;o|r”|p =lal, <1

since @ € S. Hence there is ny such that for all n > ng we have |r,| < 1, and hence r, = Z—" with
Un,bp € Z and p1by,. In particular, b, is invertible in Z/p"Z; let ¢, € Z be such that b,c, = a, (mod p"),

so p™ | (an — bpcy). Then

Gp — bn Cn

bn

|Tn - Cn‘ = |7 < exp(fn) —0

p

But (|r, —cpl, :n > 0) — 0 as well; so

a=(r,:n>0)+M=(c,:n>0)+M

lim ¢, = «
n— oo

in @ 0 Lemma 3.26

It follows that every « € S is of the form (a, : n > 0) + M where (a,, : n > 0) is a Cauchy sequence in Z.
We get a projection p,: Z — S/p™S (from the inclusion Z — S); this induces a map p,: Z/p"Z — S/p™S.

Lemma 3.27. p, is an isomorphism of rings for all n > 1.

Proof. Fix n > 1.

Surjectivity We first check that p, is surjective. Suppose a € S. If a € Z, we’re done; we may thus assume

that o ¢ Z. We want a € Z such that o —a € p"S. Pick a € Z such that |a — a, < exp(—n). Say
a = (by, :m>0)+ M for b, € Z; then 0 #a — a = (b, —a:m > 0)+ M, and

exp(~n) > [a —al, = lim |b, —dl,

with the latter sequence eventually constant; hence there is mg such that for all m > my we have
by, — al, < exp(—n). Hence p" | (b, — a), and hence b, — a = p"cy, for some c,, € Z. Note that as
(by, : m > 0) is Cauchy in Z, so too is (¢, : m > 0). But now

a—a=(p "¢y :m>0)+M=p"((¢y, : m>0)+ M) €p"S

SO py, is surjective, as desired.

10



Injectivity We check that ker(p,) = p"Z. Suppose a € Z has a € p™S. Then a = p" with 8 € S, say
B = (bm :m >0)+ M with b,, € Z. Then

jal, = [al, = lim [p"by], < exp(—n)

s0 p" | a in Z, as desired. OO0 Lemma 3.27

Note now that the following diagram commutes:

S Ont1 S/pn—HS = Z/pn—i-lZ

DN ¥

S/p"S —=—— Z/p"Z

By the universal product of projective limits, we get a map 6: S — I'&HZ/])”Z = Z, given by o — (0, (o) :
n > 0).

Proposition 3.28. 0 is an isomorphism of rings.
Proof.
Injectivity Suppose 6(a) = 0. Then « € p"S for all n > 1. So
‘a|p = |pn 6'”/ ‘p = ‘pn‘p 677/|p S eXp(—n)
€s pf]
for all n > 1; so |/c;|p:O7 and o = 0.

Surjectivity Suppose s € Zy; let (s, : m > 0) be the sequence of partial sums. We know (s,,, : m > 0) is
Cauchy in Z; let
a=(sp:m>0)+MeS

For each n > 1, we then have a — s, = (81, — 85, : m > 0) + M. If m > n, we the have that p™ | s, — $p.
Hence a — s, € p™S, and hence 0(a) = s. O Proposition 3.28

TODO 1. Consistency of indices?

Note that the above map is given by

o] n—1
ZaipZ — <Zaipl tn > ()> + M
i=0 i=0

Lemma 3.29. @ = Frac(5). In fact, if o € @ then o =

p[fn for some m >0 and some B € S.

Proof. Take a € @ If |/oz\\p < 1 then a € S and we’re done. Suppose then that \/oz\|p > 1; then |/oz\\p = exp(m)

for some m > 0. So Wp = |pm|p|/a\|p = exp(—m)exp(m) = 1. So p™a € 5, as desired. O Lemma 3.29

Hence we have commuting isomorphisms

)
&
s

N

U —
N

—

&{ R
N
S

Explicitly, a € Q,, is % for some 3 € Z,. The image is %.

11



We thus obtain an induced absolute value on Q, that we denote by |-|p; this extends |~|p on Q. Note that

Q,, is complete under this absolute value; further note that Z, = B;(0).
Given o € Qp, if a = 0 then [af, = 0. If a # 0 then

oo
a=> ap
i=m

for some m € Z with a,, # 0 and a; € {0,...,p—1}. Then

o] 00
m —m i—m
p E a;p E a;p
i=m =m

€Z,

|Oé|p = = exp(—m) nh—>Holc‘ Am +am+1p+' . '+am+n—1pn_1|

P #£0

, = exp(—m)

_ m
= [p™|,
p

Ezercise 3.30. In a non-archimedean absolute valued field, every point of an open ball is its center.
Remark 3.31. pZ, = B1(0) since if o € Z,, then

pal, = Ipl,lal, = exp(=1)al, <1

and if \a|p < 1 and a € Z,, the power that appears is negative; so

<1
p

p
and £ € Zy, and « € pZy.

Fact 3.32. The only complete Archimedean absolute valued fields are R and C, up to inducing the same
topology (where R and C carry the usual absolute values).

Fact 3.33 (Ostrowski’s theorem). On Q, up to inducing the same topology, the only Archimedean absolute
value is the usual one, and the only non-Archimedean ones are Hp for p prime. (Aside from the trivial one.)

There are many interesting non-Archimedean absolute valued fields besides the family (Q, |-|,).

Example 3.34. Let K be any field, and consider the rational functions K (t). We define the t-adic absolute
value to be

A —

where 7 is the highest power of ¢ dividing g. The completion is K ((¢)) (Laurent series in ¢) where

e’}
E Clii'2
i=m

where m € Z and a,, # 0. (Note that m is the order of vanishing of the Laurent series at 0.)

= exp(—m)

It is convenient to switch to additive notation at this point: given a non-Archimedean absolute valued
field (K, |-|), we define v: K - RU {00}

o) = {log(|m|) ife#0

00 else

In (Qp,|-[,) we have

v (Z aipl) = —log(exp(—m)) =m

oo
v (Z aﬁ’) =m
i=m

This function v is called a valuation. The axioms for |-| become

In (K((¢)),[]), we have
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1. v(z) = oo if and only if z = 0.
(zy) = v(@) + v(y).
3. v(z +y) > min{ v(z),v(y) }.

2.

<

By convention we set cc = co+ 0o =7+ 00 =00+ for all r € R.

Remark 3.35. The triangle inequality for |-| does not have a nice aditive formulation.

Definition 3.36. A classical valued field is a field K equipped with a valuation v: K — RU { oo } satisfying
the axioms listed above.

Every classical valued field comees from a non-Archimedean absolute valued field via |z| = exp(—v(z)).
We thus identify classical valued fields with non-Archimedean absolute valued fields.

Proposition 3.37. If (K,v) is a classical valued field and v(x) # v(y) then v(z +y) = min{v(z),v(y) }.

Proof. Assume without loss of generality that v(z) > v(y). If v(z +y) > v(y), then

u(y) = v((z +y) =) = min{v(z +y),v(=2) } = min{o(z +y),v(z) } > v(y)
a contradiction. So v(z +y) = v(y). O Proposition 3.37

Note that v: K* — R is a homomorphism into R under addition.

Remark 3.38. Given a sequence (a, : n > 0) in K, we have

lim a, =a
n— o0
if and only if
lim v(a — a,) = oo

n— oo

Definition 3.39. Fix a classical valued field (K, v). We define open balls B(c) for ¢ € R and ¢ € K to be
B.(c)={zeK:vx—c)>e}

If € K then we sometimes use By(c) = {z € K : v(z —¢) > v(z) }. We define the valuation ring to be
Oy = By1y(0) = {z € K : v(z) > 0}. (As before, this is a subring of K by the valuation axioms.) We
set M, = By1)(0) = {z € K : v(x) > 0}; this is an ideal of O, since for x € M, and a € O, we have

v(az) =v(a) +v(z) >0+0=0.

Remark 3.40. Given z € K*, note that v(2) = —v(z); hence either = or —z lies in O,. The units of O, are
the # € K such that both z and 1 are in O,; i.e. with v(z) and v(—x) both non-negative, i.e. with v(z) = 0.
Hence the units of O, are precisely the elements not in M,,, so M,, is the unique maximal ideal of O,; i.e.
O, is a local ring.

Definition 3.41. We define the residue field of (K,v) to be K, = O, /M,. We use res: O, — K, to denote
the quotient map. The image v(K*) is a subgrape of R called the value grape.

In all our examples, the value grape has been Z.

| (@Qup)  (@Qpyvp) (K(t),vr) (K((t),ve) K
Ov Zp) Ly Kt] K{[t] Uns1 K[[t7]
M, PZp) PZ,  tK[t]q tK([t] U, trk[[t7]]
K, |F,=2Z/pZ F, K K K
w(KX) Z Z Z Z Q

The last column refers to Puiseuz series, which we now expound on.
Suppose K is a field; fix n > 1 and consider K,, = K((t#)). (Note that K,, = K((t)).) The valuation v,

on K, is vp(a(t®)) = L2 for o € K((t)).

n

13



If n | £ then there is a natural identification K,, C K, as a field extension. Indeed, say ¢ = nm; we then
m m
identify t% = (tm) - (t%
We have vy | K,, = v,; this is easily seen. So we can take the direct limit: we get

K=|]JK,

n>1

o= vn

n>1

and

a classical valuation on K. If f € K is non-zero, then it takes the form

00
i
E ait n
i=m

formeZ,n>1,a, #0and a,, € K; then v(f) = % Note f € O, if and only if m > 0 and f € M, if and
only if m > 0.
Something to try: consider K ((¢))*8. But K is not complete.

We now return to general classical valued fields. Suppose (K, v) is a classical valued field, with O,, = B1(0).
Let c € K. Then

Bi(c)={zeK:|lxr—c <1}
={zeK:vlx—c)>0}
={zeK:2—c€0,}
=c+ O,
Conclusion: the closed unit balls are just the additive translates of O, in K.
What of other radii? Consider radii in the value grape; i.e. r is in the image of |-|. Suppose r > 0 is real

and r = |d| for some d € K. Take ¢ € K and consider B, (c) = B,(c), where v = v(r) = —In(r). We consider
the case ¢ = 0. Then

Br(0) ={z e K:|z[ <|d}
={ze K :v(x)>v(d) =~}

:{xGK:v(g)ZO}
xeKzgeOU}
dQO,

More generally, B,.(c) = ¢+ dO,. These are all additive translates of O,-submodules of K, as closed balls
whose radius is in the value grape.

Remark 3.42. Suppose (k,v) is a classical valued field; we get an absolute value with |z| = exp(—v(z)). A
basis for the topology is sets of the form

Bc)={zeK:|lzx—c|<r}

for c € K and r € R with » > 0. In fact one can check that a basis for the topology is the set of open realized
balls: the B,.(c) where r is in the image of |-|. (The point is that every closed realized ball is a union of open
realized balls.) In valuation notation, the realized balls take the form

Bya)(c) ={z e K :v(z —c)>v(d)}

force K and d € K*.

14



We saw last time that

Ev(d) (C) =c+dM,
Byay(c) = c+dO,

TODO 2. [ think in the future we will use “balls” to mean realized balls.
We will visualize the closed balls as trees:

Lemma 3.43. Let T be the set of closed balls (in valuation notation, i.e. realized) ordered under C. Then T
is a (downward) tree; i.e. for B €T we have { B' € T : B C B’} is linearly ordered by C.

Proof. Suppose B C By and B C Bs. Suppose ¢ € B. Then by the homework we have that c is a center of
Bi and Bs; so

Bl = EM (C)
By = B, (c)

for some 1,72 € v(K*). Hence By C B if and only if 5 < 7;; since the value grape is totally ordered, we
get that By C By or By C Bj. (Recall that

Byc)={zeK:v(x—rc)>~}
for c € K and vy € v(K*).) O Lemma 3.43

Ezxzample 3.44. Let K = Q with v = vz the 3-adic valuation.

/ %Ov \
/ OU % +OU %O’U
30, 1430, 2 + 30,
320, 3439 2.3+439 : 2+ 320, 2+ 3+ 320, 2+2-3+ 320,

(Note that 30, = B,—1(0).) In particular for
0 .
a= Z ;3" € Qs
i=m
we have that « is in every closed ball of the form

m+n—1
> a3t +3mro,

i=m

Furthermore, these balls form a path through the tree; hence we can regard elements of Q3 as paths through
the tree.

3.2 Hensel’s lemma

Consider k[[t]] for k a field; suppose
= at €kt
i=0
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for a; € k. To find an inverse for f we solve fX —1=0; i.e.

1= (Z aiti> <Z bltl> = a()bo + (aObl + albO) + -
=0 =0

We need by € k to be a solution to agX — 1 = 0; this is in fact sufficient. Another way to view this is that we
simply applied the residue map k[[t]] — k to the equation fX — 1 =0, and we got a condition for a solution.
This is generalized as follows:

Lemma 3.45 (Hensel’s lemma). Suppose (K,v) is a classical complete valued field; suppose P(x) € Oy[z].
Let P(x) € K,[z] be obtained by applying res to each coefficient of P. (Here res: Oy — K, = O,/ M, is the
quotient map a — @.) Suppose o € K, is a solution to P(x) =0 such that Pl(a) # 0 (where P is the formal
derivative of P). Then there is a € O, such that P(a) =0 and res(a) = a.

Remark 3.46. If we start with any b € O, with a = res(b) a solution to P(z) = 0, then since res(a) = res(b),
we get a —b € M, = B,(1)(0); i.e. a is close to b.

Hensel’s lemma is a consequence of:

Lemma 3.47 (Hensel-Rychik (1.3.1)). Suppose (K,v) is a complete classical valued field; suppose P(x) €
Oylz] and ag € O, satisfy v(P(up)) > 2v(P’(ag)). Then there is a € O, such that P(a) =0 and v(a — ag) >
v(P’(ag)).

Fact 3.48. Suppose R is a ring, P € R[z] is a polynomial, and w is another indeterminate. Then P(z + w)
can be written in the form P(z) + P'(2)w + Pa(2)w? + -+ + Pp(2)w™ where Py, ..., Py, € R[Z]

Proof of Lemma 3.47. We may assume P(ag) # 0. Let e = v(P(ag)) — 20(P’(ap)) > 0. (So € € R.) Define
recursively (a, : n < w) by ap41 = a, — 11;,((2’;)); we will show that (a, : n > 0) is Cauchy and converges to a
root of P in O,.

For n € N let
b, = Pl(an)
- P(an)
n P’(an)2

SO Gpt1 = Ap — Cpby.

Claim 3.49.
1. v(b,) = v(bg) = v(P'(ag)) for alln.
2. v(cy) > 2.

Proof. We apply induction on n.
For the case n =0 (1) is immediate; for (2) we simply note that

P(ao

v(co) = ’U(W) =v(P(ag)) — 2v(P'(ap)) = ¢

Suppose the claim holds for n; we check the case n + 1.

1. Using Fact 3.48:

Hence

by the induction hypothesis.
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2. Again using Fact 3.48:

P(ans1) = Plan — cpby)
= P(an) + (—cnbn)P'(an) + (—cnby)?e for some e € O,

= P(a,) + ( P]’?((ZZ))Q P’(an)>P’(an) +c2b2e
=c2ble

Hence v(P(an+t1)) = 2v(cy) + 20(by,) + v(e). So
v(cpi1) = U(P(%M)

P,(an+1)2

= o(P(ans1)) — 20(P'(ans1))

= 2v(eyp,) + 2v(by) +v(e) — 2v(by11)
> 2v(ep)

> ontle

by the induction hypothesis.

But now
V(ant1 — an) = v(epbyn) = v(cy) +v(by) > 2" + v(bg) — 00

as n — o0; 80 (an : n > 0) is Cauchy. Since K is complete, we may thus take

a= lim a, € K
n—oo

Then a € O, since O, is closed in K.

Ezercise 3.50. polynomials are continuous in the topology on K induced by wv.
Then

P(a) = nlLH;O P(ay)
o(P(a) = lim v(P(a,)
But
v(P(an)) = v(eaby)
v(en) + 2v(by)

> 2" + 2(bg)
— 0

So v(P(a)) = oo, and P(a) = 0.
Finally, note that

v(a —ap) =v((a — ap) + (a, — ap)) > min{ v(a — a,),v(a, —ag) }

for any n. But

v(a, —ag) = v((an — apn-1) + (Gn—1 — Gn—2) + -~ + (a1 — ag))

_OISnilgnv(alH a;)
= min v(¢;b;)
0<i<n

Y

Orgnl_lgn(Q e +v(bo))
= U(bo) +e

As n — oo we get v(a — ag) > v(by) = v(P’(ao)).

17
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We can now prove Hensel’s lemma:

Proof of Lemma 3.45. Pick ag € O, with ag = a. Then

Plao) = P(a) = P(a) = 0

Hence P(ag) € M,, and v(P(ag)) > 0. So

P'(ag) = P(ag) = P(a) = [ () #0

Hence P’(ag) ¢ M, and v(P’(a)) = 0. So v(P(ag)) > 2v(P’(ap)). By Hensel-Rychik, there is a € O, with
P(a) =0 and v(a — ag) > v(P'(ag)) = 0; so a —agp € M,, and a =ag = a. O Lemma 3.45

4 Krull valuations

Definition 4.1. A waluation ring is an integral domain R such that for every = € Frac(R) one of x and 27!
lies in R.

Given a valuation ring R with K = Frac(R), we’d like to find a valuation on K of which R is the
valuation ring. If (L,v) is a classical, then v: L* — R; hence v(L*) = L*/OX (where OF is the units
of O,). Analogously, we may consider I' = K*/R* as a multiplicative grape. We get a quotient map
v: K - TU{oco} given by

00 ifx=0
T —
aR* ifae K*
Axioms (1) and (2) are satisfied by this construction; to make sense of axiom (3), we need an ordering on T'.

Definition 4.2. For a,b € K*, we set aR* < bR* if and only if 2 € R.

Proposition 4.3. < is well-defined on I' and makes I" into an ordered abelian grape; i.e. < is a linear order
and whenever 6,7y, \ € T' satisfy v < A we have oy < §A.

Proof.
(Well-defined) Immediate.
(Reflexive) Suppose a € K*. Then ¢ =1 € R, so aR* < aR*.

(Tranitive) Suppose aR* < bR* and bR* < cR*. So 2 € Rand { € R; hence 2§ = ¢ € R, so aR* < cR*.

c
b

(Antisymmetry) Suppose aR* < bR* and bR* < aR*. Then § € R and 3 € R; so § € R*, and
aR* = bR*.

Totality) Suppose a,b € K*. Since R is a valuation ring, we have either ¢ € Ror £ € R; hence bR* < aR*
( y) Suppose a, g 5 . ER
or aR* <bR*.
(Grape ordering) Suppose aR* < bR* and ¢ € K*. So 2 € R, and % € R. So caR* < ¢bR*, and
(cR*)(aR*) < (cR*)(bR™). O Proposition 4.3
Proposition 4.4. If x,y € K* then v(z 4+ y) > min(v(x),v(y)).

Proof. Without loss of generality we may assume that v(y) < v(z); so § € R, and min(v(z),v(y)) = v(y).
But % = +1€R;s0v(y) <v(z+y), as desired. O Proposition 4.4

Remark 4.5. R={xz € K : v(z) > 0} since v(x) > 0 if and only if zR* > 1R*; i.e. if § € R. (Here “0”
refers to the identity of I' = K*/R*, which is 1R*.)

Definition 4.6. A wvalued field is a triple (K, v,T") where K is a field, (T, +,0) is an ordered abelian grape,
and v: K —» T'U{oo} is a surjective map satisfying the following:
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1. v(z) = oo if and only if z = 0.
2. v: K* — T is a grape homomorphism.
3. v(z +y) > min(v(z),v(y)).

We call T the value grape of (K, v,T'). We define the valuation ring of (K,v,T)tobe O, = {z € K : v(z) >0},
and the mazimal ideal of O, to be M, = {z € K : v(z) > 0}. We further define the residue field of (K,v,T),
with res or * the quotient map O, — K,.

This generalized classical valued fields simply by allowing arbitrary ordered abelian grapes as the value
grapes.

Remark 4.7. Just as in the classical case, the axioms imply:
1. O, is a valuation ring.
2. O, is a local ring with maximal ideal M,,.
We have shown:
Proposition 4.8. Every valuation ring is the valuation ring of a valued field.

In fact, we have seen that the valued field structure (K,v,I") can be reconstructed from O, by ring
theory:

K = TFrac(O,)
(F7+ﬂ0) = (KX/O;;v'al)

b
a0y <bO; = — €O,
a
o(r) = roOf
For the penultimate, note that

aQ) < b0O) << v(a) < v(b)

Corollary 4.9. Suppose (K,v,T) and (F,w,A) are valued fields. Then the following are equivalent:

1. (K,v,T) 2 (F,w,A); i.e. there is a pair (a, p) where a: K — F is an isomorphism of fields, p: T — A
is an isomorphism of ordered abelian groups, and the following diagram commutes:

K——— F

[+ [+
Tu{oco} —2= AU{co}
2. O, 20, as rings.
The details of the proof are an exercise; it is a manifestation of the previous remark.

Definition 4.10. Suppose v, w are valuations on K. We say v and w are equivalent if O, = O,. (True
equality, not just isomorphism.)

Ezercise 4.11. (K,v,T') and (K, w, A) are equivalent if and only if there is an isomorphism of ordered abelian
grapes I' — A such that (idg, p) is an isomorphism (K, v,I") — (K, w,A).

Fact 4.12 (2.1.1-ish). Suppose (K,v,T') is a valued field. Then the following are equivalent:

19



1. v 1s equivalent to a classical valuation on K.
2. There is an embedding of ordered abelian grapes (T',+,0,<) < (R, 4,0, <).
3. For any B € T with B > 0 and any o € T" there is n € N such that o < nf.

4. T is a rank 1 ordered abelian grape, where the rank of an ordered abelian grape is the number of proper
convex subgrapes, where a convex subgrape A < T is one where if a,8 € A and v €T witha <y <
the v € A.

What about on Q7

Proposition 4.13. Up to equivalence, the only non-trivial valuations on Q are the p-adics ones. (We say v
on K is trivial if v(K*) =0; i.e. if T =0, d.e. if O, = K.)

Proof. Since equivalence means having the same valuation ring, it suffices to show that the only proper
valuation rings that are subrings of Q are Z(,) for p prime.

Suppose R g Q is a valuation ring. Let M be the maximal ideal of R. Now, Z C R, so we may consider
M NZ an ideal of Z. This is a proper ideal since 1 ¢ M; it is non-trivial since otherwise every element of
Z\ {0} is a unit of R, contradicting our assumption that R # Q. So M NZ is a non-trivial prime ideal of Z
So M NZ = pZ for some prime p.

Hence if n € Z is non-zero and p { n, then n ¢ M, so n is a unit of R. So % €ER;ie. ZCZy CRGQ

Conversely, suppose § € R with ged(a,b) = 1. If p | b, then { a; so % € Zyy € R. Hence %% = % € R.
But p | b, s0 b€ pZ =MNZ, and b € M, a contradiction. So p{b, and § € Z,).

Hence R = Z;). OO0 Proposition 4.13

S|

In particular all valuations on Q are classical.
What of K(z), where K is a field?

Ezample 4.14. Fix P € K|[z] irreducible. We define the P-adic valuation on K (z) as follows: given f € K(x)
write f = P"% where Q, R € K[z] and n € Z with P 1 Q and P t R; then set vp(f) = n. One checks that
vp is a classical valuation on K (x) with the property that vp [ K is trivial. Note that O,, = K[z]p).

Ezample 4.15. Define vy, on K(x) by vse (5) = deg(g) — deg(f) for f,g € K[z]. Then vy, is a classical
valuation on K (x) with vy, [ K trivial.

Remark 4.16. If we let t = 1 then v on K(z) transforms into v, on K(t). So v is the “order of vanishing
at the point at co”.

Proposition 4.17. Suppose K is a field. The only non-trivial valuations on K (x) which are trivial on K
are vp for P € K[x] irreducible or veo.

In particular, they are all classical.
Proof. Let R =0, G K(z). Since v | K is trivial, we get that K C R.

Case 1. Suppose v(x) > 0 The K[z] € R & K (). As before we get that M N K[z] = PK(x) for some

irreducible P € K[z]. So K|z]py C R. Conversely suppose 5 € R with ged(f,g9) € K. If p | g then

p1t f,so f ¢ M;hence %5 = % € R, a contradiction, since p | g implies g € M. So p1{g. So 5 € K[z p)
So R = K|[z](py; so v is equivalent to vp.
Case 2. Suppose v(x) < 0. Suppose f € K[z] and f # 0. Write
f=apx" +ap_12n —1+--- 4 qg

with a, # 0 and aq,...,a, € K. Then for 0 < i < n we have

00 ifa; =0

v(a;z') = v(a;) +iv(x) = {w(x) if a; #0
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We get that
v(f) = min w(z) = nv(z) = deg(f)v(x)

oSl
So for 5 € K(x) we have
v(£> = v(f) — v(g) = deg(f)v(x) — deg(g)v(z) = (deg(f) — deg(g))v(x)

Hence g € R if and only if deg(g) > deg(f) (since v(xz) < 0). Hence v is equivalent to V.
[ Proposition 4.17

Aside 4.18. Suppose M is a complex manifold. Suppose V' C M is a C-analytic subset of dimension n — 1.
(i.e. for every p € M there is a neighborhood U > p such that V N U is the set of zeroes of some holomorphic
f:U—=C)

Then if g is holomorphic, defined at p, and vanishes on V' then f | g. We may write g = f™h for some n
with f 1 h.

Fact 4.19. If V is irreducible then n does not depend on p.

We write n = ordy (g).

If a = { (locally) is a meromorphic function on M then ordy (a) = ordy (g) — ordy (h). In fact ordy is a
valuation on Mer(M). (If M = P!(C) then Mer(M) = C(z).)

Suppose (K,v,T") is a valued field and L D K is a field extension. Can we extend v to L? If so, how many
ays? Are there any canonical extensions?

Perhaps (K, v,T") is classical, but we should ask about arbitrary (possibly non-classical) extensions to L.

We consider the case L = K(z).

Theorem 4.20 (2.2.1). Suppose (K,v,T) is a valued field. Let T' > T be an ordered abelian grape extending
(T,0,+,<). Let~y € I'. Then there is an extension of v to K(x) such that v(x) = . The value grape of
(K(x),v) is then (I',), the subgrape of I generated by T' and .

Proof. First we extend v from K to K[x]. Suppose f € K[x] is non-zero; write f = ap,z™ + -+ + a1z + ao.
We then set

v(f) = min (v(a;) + i)

Claim 4.21. Suppose f,g € K[z]\{0}. Then v(f + g) > min(v(f),v(g)).
Proof. Write

n

f=3 an'
i=0
n

g= Z bz
i=0

Then .
f+9=>) (ai+b)z'
=0
0
o(f+g)= o (v(a; +b;) + i)

S mi : N N

> min (min(v(a) +7,0(0) + i)

> min <0r§nz‘1£n(v(az) + i), OrSniléln(v(bl) + z*y))

= min(v(f), v(g))
as desired. O Claim 4.21
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Claim 4.22. v(fg) = v(f) + v(g).
Proof. As before write

n

f=3 ax'
i=0
n

g= Z bz
i=0

Then

fg= i( > aibJ)xk

k=0 \i+j=k
———

Ck

Let i be least such that v(f) = v(ai,) + i07; let jo be least such that v(g) = v(bj,) + joy. Let k = iy + jo;
consider the term of degree ko in fg; i.e. cp,z*0.

Subclaim 4.23. v(c,z%) = v(f) + v(g).
Proof. Well,

’U(ckoxk“) =0 Z azb; | + koy

i+j=ko
:’U(( Z aibi>+aiobj0+< Z aﬂ))) + koy
iti=ko itg=ko
1<10 1>10
A B

For A, we have v(a;) + iy > v(f) (since ¢ < ig) and v(b;) + jvy > v(g). Hence

v(a;) +v(b;) > v(f) +v(g) — ko
v(ai)) +ioy +v(bj,) + jov — ko
= v(ai,) + v(biy)

Hence v(a;bj) > v(ai by, )-
Similarly for B we find v(a;b;) > v(a;,bj,). Hence v(A) > v(a;,bj,) and v(B) > v(a;,bj,); so

v Z CLibj = v(aio bjo)

1+j=ko

Hence
v(ck ™) = v(aj,) + v(bj,) + 0y + oy = v(f) + v(g)
as desired. O Subclaim 4.23

Hence v(fg) <v(f)+v(g). Conversely,

v(fg) = min (v(cy) +k7)

0<k<
> b; k
o | | uin, (v(ai) + o >>)+ 7)

m(““ o+ 00 )

min, (0(/) +(9))

Il
0<k<2n H—Jk
=o(f)+
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as desired. O Claim 4.22

To be continued.
TODO 3. From this point on the extension of v will be called w.

We now define w on all of K (z): given 5 € K(z) we are forced to define w(g) = w(f)—w(g). One checks

that the claims hold for rational functions as well. One further checks that this definition is well-defined.
Hence w is a valuation on K (x) extending v and with w(z) = ~. Note that I' < w(K(z)*) as w extends

v; note also that v < w(K(z)*) since v = w(z). Hence (T',v) < w(K(z)*); that (T',v) > w(K(z)*) is clear

from the construction. O Theorem 4.20

Remark 4.24. We do not claim that this extension is unique (even when IV and ~ are fixed). But the proof
yields a canonical extension.

This gives us non-classical valuations:

Ezxample 4.25. Consider (Z & Z,0,+, <jex). We view Z < Z & Z via a — (0,a). Since Z is a proper convex
non-trivial subgrape of Z x Z, this ordered abelian grape cannot be embedded in (R, 0, +, <). Extend v, from
Q to Q(z) by w(z) = (1,0), using the above theorem; then I'y, = (Z, (1,0)) = Z @ Z. Hence (Q(x),w,Z ® Z)
is a non-classical valuation extending v,,.

Definition 4.26. Given (K,v,T"), the Gauss extension of v to K(x) is the valuation w such that

n

w E a;xz' | = min v(a;)
—~ 0<i<n
=

This is a special cae of (the proof of) the previous theorem, where IV =T and v = 0.
Theorem 4.27 (2.2.2). Let w be the Gauss extension of (K,v,T") to K(xz). Then

1. Ty, =T,.

2. K(z),, = K,(%) and T = res,,(v) is transcendental over K.

3. w is the unique extension of v with w(z) =0 and T transcendental over K,.
Proof.

1. Part of 2.2.1.

2. First note that O, vV O, and M, = M,, N O, since w [ K(z) = v. Hence we get a natural inclusion
Oy /My = O/ My; we thus view K, C K(x),,.

Claim 4.28. T is transcendental over K.

Proof. Suppose
n
i=0

for a; € K,; say o; = @; for a; € O,. Then

n n
E aixizg a; 7 =0
i=0 i=0

Hence
n
0<w (2; ;T > = Orgnilélnv(ai)
Hence v(a;) > 0 for all ¢, and hence each a; € M,. So a; = a; = 0. [0 Claim 4.28
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Claim 4.29. K(z),, = K,(T).

Proof.

(2) Clear.
(S) A wrong proof:

(Z%?):§)W76KA@

Z bix* E b, T

The problem is that = = res, : O, — K,, and the a; and b; need not be in O,,.
We now begin a proper proof.

Subclaim 4.30. If f € K[x] with f # 0 then we can write f = cg where ¢ € K*, g € O,[z], and
w(g) =0 (i.e. g € OF).

Proof. Write

SO
w(f) = min o(a;) = v(ax)

for some 0 < k < n. Let ¢ = ag # 0 (since f # 0); then

Then

Qg

v<%)u@0m%)zo

for all ¢ by choice of aj. Hence 37 € 0, and g € O,[z]. Furthermore, the coefficient of z* in g is
1, and v(1) = 0. So

as desired. O Subclaim 4.30
Now, suppose h € O,, is non-zero; say h = % for non-zero f and g. By the subclaim we have

_a g9
—~ C2 g2
€0y N~
€K coy

(since each g; € Q) where f; = c;g; as in the subclaim. Hence g—; = g—fh e O,NK C O,.
Applying residue, we find '

Since g; € O,[x] we have res,(g;) € K,[T]. Hence res,(h) € K,(T); so K(x)
desired.

C K, (T), as

w

O Claim 4.29
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3. Suppose u extends v to K (z) with v(x) = 0 and res, (z) transcendental over K,. Suppose f € K[z] is
non-zero. We will show u(f) = w(f), which will suffice to prove the result.

By subclaim, we may write f = cg for some ¢ € K* and g € O, [z] with w(g) = 0.

Claim 4.31. u(g) =0.

Proof. Well, A
v(g) > minu(b;z") = min(u(b;) + iu(z)) = minv(b;) > 0

where g =", bz for b; € O,. Hence g € O,. Applying res,,, we find

res,(g) = Zresv(bi) res, (z)® # 0

Not all res,(b;) = 0 since else res,(g) = 0, a contradiction. Hence g € OJ; ie. u(g) = 0.

O Claim 4.31
So w(g) =v(g) =0. So
u(f) = uleg) = u(e) + u(g) = u(c) = v(c)
But
w(f) = wlcg) = w(e) + w(g) = w(c) = v(c)
as desired. 0 Theorem 4.27

We now consider an opposite extreme: where the residue field remains unchanged but the grape grows
maximally.

Theorem 4.32 (2.2.3). Suppose (K,v,T") is a valued field; suppose T' > T is an extension of ordered abelian
grapes. Suppose v € TV \ T with T N {y) = 0. Then there is a unique valuation w on K(x) extending v with
w(z) =~. Moreover,

K(x)w ?U
Ly =T (y)

For example, we might consider

=
I
N

F/ = (Z D 27 Slex)
(

2
Il
—

o

Proof. By 2.2.1 there is a valuation w on K (x) with w(x) = 7; we also get that
Fy=T7)=T+Mm=Ta7)

For the residue field, we need some claims.
Claim 4.33. Suppose f € K[z]\ {0}. Then f = az"(1 + a) where a € K*, n € N, and a € K(z) with
a € My,.

Proof. Suppose
m
7= o
i=0

Let ip be such that w(a;z") = v(as,) + iy is minimal among w(a;z") for i € {0,...,m}. Note that if
w(a;x") = w(a;,z™) then v(a;) + iy = v(a;,) + io7y; so (1 —ig)y = v(ai,) — v(a;) € T, and i = ig. (Since
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ordered abelian grapes are torsion-free.) So all terms in f must have distinct w-values. So w(f) = w(a;,x") =

v(ai,) + ipy. Now, write
i aixi
f=ai,z™ <1 + aioxi0>

so o € K(x). Hence 4 .
w(a) > n;in(w(aiml) —w(a;,z™)) >0
1#10
so a € M. O Claim 4.33
Claim 4.34. Suppose f € K(z)\{0}. Then f = az™(1 + «) where a € K*, n € N, and o € K(x) with
a € My.
Proof. Write f = g—; with the g; € K[x]\ {0}. Applying the previous claim, write g; = a;2™ (i + o). So

n

——
fo @ (Lt o G e ag
a9 1+ s az 1+ as
~~ —

and
w(a) =wlog —ag) —w(l+az) >0
—_—— ——
>0 0
SO0 @ € My,. O Claim 4.34

~ Now, if f € O, \ {0} write f = az™(1 + «) for some a € K*, n € Z, and a € M,,. If w(f) > 0 then
f=0¢€ K,; assume then that w(f) =0. So

0=w(f) =w(a)+ny+w(l+a)
0

So ny = —v(a) € T; 80 n=0since I'N () =0. Son =0 and v(a) =w(a) =0; s0 a € O,. So f =a(l+ a),

and

f=a(l+a)=ackK,

(since a,1,a € Oy). So K(z),, = K,.
For uniqueness, suppose w' extends v to K(z) with w'(z) = 7. Let f € K[z]\ {0} be arbitrary; say
f=>,a;x". On each term we have

w'(a;x’) = v(a;) + iy = wa;z")
Since I' N () = 0, we know that for i # j we have v(a;) + iy # v(a;) + jv. So
w'(f) = min(w'(a;2")) = min(v(a;) +iv) = w(f)
and w’ = w, as desired. [0 Theorem 4.32

We now understand extensions of v to K (x). What about arbitrary field extensions of L?

Definition 4.35. Suppose K C L is a field extension. We say that (L, w,Ty,) extends (K,v,T',) if w [ K is
a valuation on K that is equivalent to v.

Remark 4.36. The restriction of a valuation is always a valuation (with a restricted value grape); the substance
of the above definition lies in the equivalence to the original valuation.

Exercise 4.37. Suppose K C L is a field extension. Then the following are equivalent:

1. (L,w,Ty) extends (K,v,T',).
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2. Oy NK =0,.

3. There is an order-preserving embedding of ordered abelian grapes v: I', — I'y, such that the following
diagram commutes:

The point is that “equivalence” means “having the same valuation ring”.

Remark 4.38. In studying extensions of v on K to K (z), we used “extend” in a more restrictive way; one
can check using the previous exercise that everything we said holds with the new notion of extension (where
uniqueness is now only up to equivalence).

A useful lemma:

Theorem 4.39 (Chevalley’s theorem). Suppose K is a field, R C K is a subring, and P C R is a prime
ideal. Then there is a valuation subring O C K with RC O and MNR = P.

Proof. Consider the localization R C Rp C K; by properties of localizations we have PRp N R = P. Now,
(Rp, PRp) is local but perhaps not a valuation subring of K: the problem is that Rp may be too small.
Let
Y={(A,I): Rp C AC K subrings,I C A a proper ideal containing PRp }

Then (Rp, PRp) € ¥. Order ¥ under C of both the rings and the ideal. Then ¥ is closed under unions of
chains; so by Zorn’s lemma there is a maximal element (O, M) € .

Claim 4.40. O is local with maximal ideal M.

Proof. By maximality of (O, M) in X, we get that M is a maximal ideal. Suppose there is € O\ M that is
not a unit; so = ¢ O. Then O S O[1] € K; so by maximality we have (O[2], MO[1]) ¢ Z;s0 1 € MO[L].
So

l=by+biz 4 Fbpz™™

where b; € M. So
™ =box™ +biz™ 4+ 4 by, €M

and x € M, a contradiction. [0 Claim 4.40

Claim 4.41. O is a valuation ring.

Proof. If not, there is 2 € K such that z,27* ¢ 0. So O S Olz] C K and O S O[1] C K; hence 1 € MOlz]
and 1 € MO[%] So

1= i aixi
i=0

1= Z bix_i
i=0

where a;,b; € M and m,n are minimal. Suppose m < n. Then

> bzt =1-0b € O~
i=1
So
m bz .
—i_q
Z 1 —bog v
1=1 e —
c;EM



and
m
§ cimn—i — "
i=1

But now

n
1= Z aixi
i=0
n—1
= Z a;xt + apa”
i=0

n

—1 m
g a; ' + an, E cx !
= i=1

il
l.O

7
dixl

.
(=)

with d; € M; this contradicts minimality of n. Similarly, if m > n we contradict the minimality of m.
SozeOorleco. O Claim 4.41

Now RC Rp C O C K with PRpV M and PRpN R = P. Now, M N Rp O PRp; so, by maximality of
PRp in Rp, we get that MNRp = PRp. So MNR=(MNRp)NR=PRpNR=P. O Theorem 4.39

Corollary 4.42 (3.1.2). Suppose (K,v,T,) is a valued field and K C L is a field extension. Then v extends
to a valuation on L.

Proof. Apply Chevalley’s theorem to R = O,, C L and P = M,,; we then get a valuation subring O, C O,, C L
with M, N O, = M,,. To see that w extends v, we need to show that O, N K = O,.

Claim 4.43. S = O, N K s a valuation subring of K.

Proof. Suppose * € K*. Then x € L*, so x € O, or 2! € O,; hence either x € O, N K = S or
7 leO0,NK=S. O Claim 4.43

Claim 4.44. N = M, N K is the maximal ideal of S.

Proof. Suppose x € S. Then z is a unit of S if and only if x is a unit of O,,; this is equivalent to requiring
that = ¢ M,,, which is in turn equivalent to requiring that x ¢ M,, N K. O Claim 4.44

Claim 4.45. M,NK = M, ,NQO,.
Proof.
(D) Clear.

(C) Suppose x € M, NK. If z ¢ O, then 2% € O, C O, contradicting our assumption that x € M,,. So
z € O,. O Claim 4.45

Hence S= 0, NK and M, N K = M, NO, = M,.
But for x € K we have

¢S = 7 leN
— zleM,
— 2 ¢ 0,

So S =0,. [0 Corollary 4.42

Note that the above proof in fact shows:
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Proposition 4.46. Suppose (K,v,T,) is a valued field and K C L. Then a valuation w on L extends v if
and only if My, N O, = M,.

Proof.

(=) Suppose w extends v to L; so O, N K = O,. We saw in Claim 4.44 and Claim 4.45 that M, =
My,NK=M,nNO,.

(<= ) By Claim 4.43, Claim 4.44, and Claim 4.45, we have that O, N K is a valuation ring on K and
M, N K is its maximal ideal; furthermore we have M,,N K = M,, N O, = M,, by assumption. We also
proved that two valuation subrings of a field with the same maximal ideal are the same; so O, NK = O,,
and w extends v. 0 Proposition 4.46

Definition 4.47. Suppose R C S are domains; suppose a € S. We say a is integral over R if there is a
monic f(z) € R[z] such that f(a) =0. We say R is integrally closed in S if whenever a € S is integral over
R, we must have a € R.

Lemma 4.48. Valuation subrings are integrally closed.

Proof. Suppose O is a valuation subring of the field K; suppose € K \ O. Suppose for contradiction that z
is integral over O; so
2 +az" 4+ +a,=0

for some n > 1 and a; € @. Then
l4az a2+ +a,z =0

Since z ¢ O we must then have that 2= € O, and in fact that 27! € M. So 1 € M, a contradiction.
[0 Lemma 4.48

Theorem 4.49 (3.1.3). Suppose (K,v,T',) is a valued field; suppose L DO K is a field extension. Let
V ={0y : w a valuation on L extending V }

Then .
ﬂV ={a € L:a is integral over O, } = O™

1s the integral closure of O, in L.
Some facts about integral closures:
Fact 4.50.
1. If R C L then R™ is a subring of L.
2. (Rint)int — Rint
Note that by Proposition 4.46 we get that

V={0 C L: O avaluation subring, O, CO,MNO, =M, }

More generally, given any subring R C L, consider
Sr={0 C L: O a valuation subring, R C O, M N R maximal in R}

So B = Sp,.
So Theorem 4.49 follows from the following more general claim:

Proposition 4.51. For any subring R C L we have
m‘SR _ Rint

29



Proof.

(2) If a € L is integral over R then for any O € Si we have that a is integral over O. By Lemma 4.48 we
get that O is integrally closed; so a € O.

(C) Suppose # € L\ R™. We seek O € Sg with z ¢ O. We achieve this by finding O € S, such that
x7! € M (and hence z ¢ O).

Consider R™[z~1] C L.
Claim 4.52. z ¢ R [z~ 1],
Proof. If
T=a,xz " +an_127 "+ +ag

with a; € R™, then

n+1

T =an+apn_12+---+ apx"

and x € (R™)" a contradiction. O Claim 4.52
So 7! is not a unit in R™[z~1]; so there is a maximal ideal M of R [z~!] with z~! € M.

Claim 4.53. M N R is maximal.

Proof. We first show that M N R is maximal. We have m: R [z~!] — R [z~1]/M, where the
codomain is a field; so w | R®t: R — Rnt[x=1] /M. This last is surjective since

anx” " 4+ arx " Hag € R™ [z

eM

since x~! € M; so modulo M we have that every element of R™™[z~!] is in R™™. So 7 | R is surjective;
hence the kernel M N R™ is maximal.

We now have the following diagram

Rint Rint/M N Rint

| I

R—— s R/MNR

Exercise 4.54. If A C B is an integral extension and B is a field, then A is a field.
Hence R/M N R is a field, and M N R is maximal in R. O Claim 4.53

We now apply Chevalley’s theorem to R™[z~!] and M; we get a valuation subring O C L such that
Rz~ C O and M N R™[z!] = M. Then MN R = (MnNR™[z71])N R = M N R is maximal by
the claim. So O € Sg. But 27t € M C M; so x ¢ O, and

z ¢ ﬂSR
as desired. OJ Proposition 4.51

The above proof probably works without passing to the integral closure.
Assignment 2 question 6: assume ¢ € K.

Notation 4.55. We will often write (K, O,) for a valued field, rather than (K,v,T,). We will also write
(K,0,) C (L,0,) to mean that K C L is a subfield and O,, N K = O,; i.e. that w is an extension of v.
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Definition 4.56. Suppose (K,O,) C (L, O,). The ramification indez of this extension is
e(0y/0y) =Ty : Ty eNU{o0}

The residue degree of the extension is
f(0u/0y) = Ly : Ky] € NU {00}

We say (L,O,,) is an immediate extension of (K,O,) if €(O0,/0,) = f(On/O,) = 1; ie. Ty, = T, and
L,=K,.

Ezample 4.57. (Q,Z,)) € (Qp,Zp) is an immediate extension. (This in fact generalizes to all completions of
classical valuations.)

Remark 4.58. If (K1,0,,) C (K2,0,,) C (K3, 0,,) then
e(Ous/Op,)e(Ou, [ Ou,) = €(Oyy /Oy, )
f(OUS/OUZ)f(OUZ/O'Ul) = f(ovz/ovl)

Theorem 4.59 (3.2.3). Suppose (K,O,) C (L,O,) is an extension of valued fields where L/K is finite.
Then e and f are finite and ef < [L: K].

This is a corollary of the following:

Proposition 4.60. Suppose (K,0,) C (L,0,); let E be a K, -basis for Ly, and let G be a set of represen-
tatives for the cosets of I'y in I'y,. For each e € E let a. € O, be such that a. = e; for each v € G, let by € L
satisfy w(by) =. Then X = {acb, :e € E,y € G} is a K-linearly independent subset of L.

Proof. We prove a stronger statement: if
C1le by, + oo+ Crae, by,
is a K-linear combination of elements of X, then

w(d) = mwin w(ciae,by,)

This would prove the proposition by taking d = 0, noting that none of the a., or b,, are zero, and hence that
all ¢; are zero.

Without loss of generality, we may assume w(c1b,,) is minimum among { w(c;b,,) : 1 <@ < £}. We may
also assume ¢; # 0, since otherwise all ¢; are zero and the claim holds.

Claim 4.61. w(c;by,) > w(ciby,) for all i such that v; # 1.

Proof. If w(c;by,) = w(erdy,), then v — v = w(e;) — w(er) € T'y. But 71 # ; come from G, and thus
represents distinct cosets of I',, in I'y,, a contradiction. [0 Claim 4.61

Suppose for contradiction that

w(d) > 1r£¢igzw(ciaeib%) = w(Cig Qe;, by,

for some ig. Then
d

— €M,
Cig Qe b"/iO
and p
€ My
Cig b’Yz‘o
since ae,, € O,. Then
d
—by, € My,
C1
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since w(ciyby, ) > w(ciby,). But

d _ Z CiGe, n Z ciby, u
Clb'yl ; C1 ;

€
Clb.yl ~—~
L —. . W—/Gow
M. Yi=7 YiFN Ve
Hence
&
E —ae, € My,
— C1
1
Yi=71
But )
C; C; i
- = € Ow
C1 Clb,y1

for i such that v; = 71 since w(c;by, > w(c1b,, ). Note also that £+ € Oy N K = O, s0

()x
C1

Taking residues, we then find that

since @, = e;, and the coefficients are not all zero since

()=
1
But this contradicts K ,-linear independence of E. [J Proposition 4.60

Proposition 4.62. Suppose (K,0,) C (L,O,) is an extension of valuations with L/K algebraic. Then
Ly /K, is algebraic and T, /T, is a torsion grape.

Proof. Suppose v € T'y,; say v = w(a) for a € L. Then K(a)/K is a finite extension; so we may apply the
previous proposition to the extension (K, O,) C (K(a), 0, N K(a)). (Note that O, N K(a) is indeed the
valuation ring of w [ K(a).) So w(K(a)*)/T', is finite; say of order N. Then Nv € I'y, and v +I', is torsion
inTy/T,. SoT,,/T, is torsion.

Suppose now that @ € Ly, so a € O,,. Now, a is algebraic over K, so K(a)/K is a finite extension; so,

again by the previous proposition, we get that K(a),, /K, is finite. So @ is algebraic over K,. So L, is an
algebraic extension of K,,. 0 Proposition 4.62

The following lemma will be useful later:

Lemma 4.63 (3.2.8). Suppose (K,O,) C (L, Oy,) and (K,O,) C (L, O,) with L an algebraic extension of
K. If Oy, C Oy,, then Oy, = Oy, -

Proof. Suppose O, C O, C Oy,. Then
Op/( My NOL) C Oy /(Mg N Oyy) C Oy / My,
—_————— —

0u/ M=K, Ty

Let R = Oy, /(Mu, N Oy,); s0 Ky C R C Ly,. But Ly, /K, is algebraic by the previous proposition; so R
is a field. (Indeed, if a € R, then a is algebraic over K,, so K,[a| = K,(a), and a=* € R.)

Claim 4.64. R is a valuation subring of L., .

Proof. Suppose @ € L, with a € Oy,. If a € O, then @ € R. If a ¢ O,,, then a=! € O,,; so
a~'=a'eR. O Claim 4.64

32



So R = Ly,, since L,, = Frac(R) = R. Suppose a € O,,. Then by the above there is b € O,, and
x € My, such that a = b+ z. But now x € M,, then 271 ¢ O,,; in particular, we get that 27! ¢ O,,,,
and z € Oy,. (In fact £ € My,.) Soa=b+x € Oy,. S0 Oy, C Oy, . O Lemma 4.63

Proposition 4.65. Suppose (K,0,) C (L,O,,) where L = K&, Then
1. T, = (K,)™.
Ty, =

2. div(T,) is the divisible hull of T',; i.e.

(a) Ty /T is torsion.
(b) T, is divisible.

Equivalently, every map of Ty, to a divisible abelian grape factors through the embedding I, — T',.

Proof. 1. We already know that L, /K, is algebraic; it then suffices to check that L, is algebraically
closed. Suppose P(z) is a non-zero polynomial over L,,; we may assume it is monic, say

Plx)=a2"+a12" '+ +ap1x+ay,

with aq,...,apn € Ly, and o; = @; for a; € O,,.

Consider
Q) =a2"+ax" ' 4 Fa,_ 12+ ap € Oyl1]
Since L is algebraically closed, we get that Q(z) has a root in O,,. Since Q(z) is monic and has

coefficients in O,, and since O,, is integrally closed in L we get that Q(x) has a root in O,; say b € O,
has

"+ a b P+t an_1b+a, =0
Taking residues, we find that
-n _ -n—1 _
b a4+ =0
So P(b)=0and b€ Ly,. So L, = (Fv)alg.

2. We already know that I",,/T,is torsion. Suppose v € T, and n > 0. Write v = w(a) where a € L*.
Since L is algebraically closed, there is b € L* such that " = a; then v = w(a) = w(b") = nw(b). So
w(b) € 'y, and nw(b) = v. So Iy, is divisible. O Proposition 4.65

Our next goal is to count the number of extensions of v from K to a finite extension L.

Recall: K5 is the set of a € K®® such that the minimal polynomial of a over K is a separable polynomial.
Note that in characteristic 0 we have K°P = K2l

Fact 4.66. In characteristic char(K) = p > 0 we have that K /K is a purely inseparable extension: if
a € K8 then a?” € K5 for some n > 0.

Definition 4.67. Suppose L/K is an algebraic extension. Then L is of finite separable degree if (LN KP)/K.
In this case we set
[L: Klsep = [LNEK*P : K]
FEzxzample 4.68. Consider
L=JkGr) = grer
n>0

the perfect hull of K. Then L/K is algebraic of finite separable degree since L N K*P = K. But L/K is not
finite.

Lemma 4.69 (3.2.6). Suppose K is a field with finitely many valuation subrings O1,...,0,. Suppose
O; L0 fori#j. Lee R=0,1N---NOy,. Let P, = M;NR. Then

1. O; =Rp, forie{l,...,n}.
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2. Pi,..., P, are the distinct maximal ideals of R.

Proof. We check part (1).
Fixie€{1,...,n}. Then O; and Rp, are subrings of K.
If z € R\ P;, then z € O; \ M;; hence % € O;. Hence Rp, C O;.
For the converse, suppose a € O;. Let

J={1<j<n:a€0,;}
So i € J. Choose a prime p such that
e p > char(K)
e p > char(K;) for j € J (where K is the residue field corresponding to O;)
e res;(a) is not a primitive p*® root of unity in K; for any j € J.
Let b=1+4+a+a*+---+a’ !;s0be O for all j € J. We will show that %, ; € R.

Claim 4.70. For j € J we have b € O;.
Proof. If res;(a) = 1, then res;(b) = p # 0 in K j; so b ¢ M;, as desired.
Suppose then that res;(a) # 1. Then

res;(b) = 1 +res;(a) + - - - + res;j(a)P~*

So
res;(b)(1 —resj(a)) = 1 — res;(a)?
and ) (a)
—res;(a
res;(b) = ——— " £
() 1 —res;(a)
by choice of p. [0 Claim 4.70

Hence b= € O; for all j € J.
Suppose j ¢ J. Then a ¢ O;, and a~' € M,; hence

l+a ' +a 2+ +a Pt g M;

But now
1 a—PtL

- l14+a+---+aP? :afp+1_|_afp+2_|_..._|_afl+1
But a™! € O;, s0 a Pt € O;; so

b—l

1
1+a14+---4qprt!

S Oj
and b=! € O;.

Similar arguments show that ¢ € R. But now b € O, so + € O; \ M;;s0 € R\ P;, and b = 11 € Rp,.
So

0 Lemma 4.69
Corollary 4.71 (3.2.7). With the setup of the previous lemma, consider the map

R—oKix---xK,

a +— (resi(a),...,res,(a))

where res;: O; — K;. Then this map is surjective.
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Proof. By part (2) of the lemma, we get that if ¢ % j then P; and P; are distinct maximal ideals of R. So
P; + P; = R. By the Chinese remainder theorem, we then get that

R— R/P, x---X R/P,
a— (mi(a),...,m(a))

is surjective, where m;: R — R/P; is the quotient map. But R/P; = Rp,/P;Rp, = O;/M; = K;, and this
isomorphism preserves the quotient maps. [0 Corollary 4.71

Theorem 4.72 (3.2.9). Suppose (K, O,) is a valued field and L/K is an algebraic extension of finite separable
degree. Then there are at most [L : Klsep, extensions of v to L, up to equivalence.

Proof. By a previous lemma, we know O; € O; if i # j. So the corollary yields R — Ly X -++ x L, is
surjective, where R=01N---NQO,. Forie {1,...,n}, let ¢; € R be such that

1 ifi=j
res;(ei) =4 ifij

Then each ¢; is algebraic over K. So if p = char(K) then there is an ¢ > 0 such that each cf[ € K*°P N L.
Let d; = ¢ € R. Note

. o1 ifi=j
res;j(d;) = res;(c! ) =res;(¢;)? = {0 it

(If char(K) = 0 we instead let d; = ¢;, which is already separably algebraic.)
Claim 4.73. di,...,d, are K-linearly independent.

Proof. Toward a contradiction, suppose ai;d; + - - - + a,d, = 0 where ay,...,a, € K are not all 0. We may
assume
v(ay) = 1r_<nilé1nv(ai)
Write a a a
dy = —2dy — S2dy — - — 24,
aq aq aq

For j > 1, we have res;(d;) = 0; hence d; € M, for each j > 1. Hence for j > 1, we have
a;
vl = ) =v(a;) —v(a1) >0
ay
So Z—i € 0, C Oy, and d; € M;. But this contradicts our assumption that res;(dy) = 1 # 0. O Claim 4.73
Hence [L : Klgep = [LNK*P : K| > n. O Theorem 4.72

Corollary 4.74. Suppose (K,Q,) is a valued field and L/K is a purely inseparable extension. Then there is
a unique extension of v to L.

Proof. “Purely inseparable” exactly means that [L : Klsp = 1. [0 Corollary 4.74

Theorem 4.75 (Conjugacy theorem (3.2.15)). Suppose L/K is a normal algebraic extension and v is a
valuation on K. If v1,vs extend v to L then there is 0 € Aut(L/K) such that 0Oy, = O,,.

Remark 4.76.

1. Recall that L/K is normal if L is the spliotting field of a (not necessarily finite) set of polynomials over
K; equivalently, if whenever f € K|[x] is irreducible and has a root in L then all the roots of f are in L.

2. We let Aut(L/K) be the grape of field automorphisms of L that act as the identity on K.
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3. If w extends v to L and 0 € Aut(L/K), then 0O, C L is a valuation subring, and cO,NK = O,NK =
Oy; ie. (L,00,,) is a valuation extending v. (In fact, (L, Oy) = (L,00,,) via ¢.) So Aut(L/K) acts
on the set of extensions of v to L; the conjugacy theorem says that the action is transitive.

4. In particular, all extensions of v to a normal algebraic L/K are isomorphic. So the residue degree
and ramification index of such extensions are invariant: they depend only on L/K, and not on the
particular extension of v to L.

Proof of Theorem 4.75.

Case 1. We first check the case where L/K is Galois; i.e. normal, finite, and separable. Let

01 =0,
01 =0,,

G =Aut(L/K)
H, = stab(O4)

={o€eG:00, =0}
HQZStab(OQ)

so G is a finite grape. Write

G = OHNTZI = G Hgijl
j=1

i=1

as the union of distinct cosets of Hy and Hy (with o;,7; € G). We will show that for some 1 <i<n

and some 1 < j < m we have ijlaiOl = O,.

Now, note that Tj_ldl O1 = Oy if and only if 0,01 = 7;03; by Lemma 4.63 this occurs if and only if

;01 C 7,05 or 702 C 0;0;. Suppose for contradiction that for all 7 and j we have 0,01 € 7,02 and

TjOQ g U,‘Ol.

Claim 4.77. For all 1 <i < i <n we have 0,01 € 0;O1. Similarly, For all 1 < j < 7/ < m we have
702 € 757 Os.

Proof. Again by Lemma 4.63, if 0;01 C 0,01, then 0,01 = 0+ O1; hence oi_,lai(?l = 04, and O'Z-_/lO'l' €
H. But this contradicts our assumption that 7 and i’ represent distinct cosets of H. O Claim 4.77
Let

R= ﬁai(’)lﬂ ﬁTjO2

i=1 j=1

Then by Corollary 4.71, since these extensions of O, are all incompatible, we get that
n n
R— (H Uiol/UiM1> X (H TjOz/TjM2>
i=1 i=1

(the product of the residue maps) is surjective. Pick a € R such that a — 1 € o;M; fori € {1,...,n}
and a € ;Mg for j € {1,...,m}.

Now, suppose o € Gj; so for some i € {1,...,n} and some p € H; we have 0 = po ai_l; likewise we
write o =no Tj_l for some j € {1,...,m} and some 1 € Hy. But then

ola—1) € alo;My) = poa; H(o;My) = pMy = My

and

o(a) € o(1;Ms) = (nor; )T; Mz = nMy = My
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So o(a —1) € M; ando(a) € My for all 0 € G. But

Ha(a)eMgﬂK:Mv

oceG

since

I[ #(a) € L

ceG

since L/K is Galois we get that L = K. But

[[e@e Mi+1) NK=MNEK)+1=M,+1

o€G multiplicatively closed

a contradiction since 1 ¢ M,,.

Case 2. We now check the case where L/K is finite and normal (though not necessarily separable). We
then get an intermediate extension K C L N K®P C L with L N K%P/K Galois. Suppose O; and Oy
are valuation subrings of L such that O1 N K = O, N K = O,. Let

O} = O N (LN K*P)
Oy = Oy N (LN K*P)

By the previous case there is o € Aut(L N K%P/K) such that o0} = Oj.

But the restriction map Aut(L/K) — Aut(L N K*P/K) is actually an isomorphism, and in particular
is surjective. Another way to see surjectivity: suppose a € L. Then for some n we have a?” € L N K5P;
we then send a +— (o(a?"))?"". (One can check that this is actually an isomorphism, though we only
need surjectivity.)

So we can lift 0 € Aut(L N K5P/K) to o € Aut(L/K). Now, 5(0;) C L is a valuation subring, and
a(01)N(LNK*P) =5(01NILNK*P) =0(O;NLNK*? =007 =0,
But now O3 and ¢(0O;) are two extensions of 0%, and L/L N K*° is purely inseparable; so Oz = 5(01).

Case 3. We now merely suppose that L/K is normal and algebraic (not necessarily finite or separable).
Suppose O7 and O, are valuation subrings of L with O1 N K =0, N K = O,,. Let

F={(F,0): KCFCL,F/K normal,oc € Aut(F/K),c(O1NF)=0NF}

Now, K,id) € F, so F # (). One checks that every chain in F has an upper bound; by Zorn’s lemma,
there is a maximal (F,o) € F. If F = L, then we are done. Suppose towards a contradiction that
F # L;let a € L\ F. Let p(x) be the minimal polynomial of a over F'; let N be the splitting field of p(x)
over F. We can extend o to & € Aut(L/K) such that 5(N) = N. (First extend o to 7 € Aut(K?*2/K)
by uniqueness of 18 = K#8: since L/K is normal, we get (L) = L, and we let ¢ = & | L. But now
o(N) is the splitting field of p?(x) = p(x) over F' (where p? is obtained from p by applying o to the
coefficients of p), which is just N.)

Let Of =5~ 1(O2 N N), which is a valuation subring of N. Note also that O] = ~(O N N) extends
Y ONF)=0"YO1NF)=0;NF. But O] NN also extends O N F; hence, by the previous case,
we get 7 € Aut(N/F) such that 7(O; N N) = Of.

Consider now o o 7; note that
gor(O1NN)=5(0])=0NN

Furthermore, since o € Aut(N/K) and 7 € Aut(N/F'), we get that doat € Aut(N/K). So (N,go01) € F
and (F,o) < (N,dor7) since 6 o7 [ F = o, contradicting the maximality of (F,o) in F. So
F=L. [0 Theorem 4.75
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4.1 Fundamental inequality

Suppose L/K is normal and finite; suppose v is a valuation on K. By the conjugacy theorem, we get that all
extensions of v to L have the same residue degree and ramification index, since they are conjugate under
Auwt(L/K).

Definition 4.78. We call this ramification index e the ramification index of L/K with respect to v. We call
the residue degree f the residue degree of L/K with respect to v.

Let r be the number of non-equivalent extensions of v to L.

We know:
e<[L:K]
f<[L:K]
ef <[L:K]
r<[L:K]

sep

Theorem 4.79 (Fundamental inequality). Suppose L/K is Galois and v is a valuation on K. Then
ref <|[L:K].

In fact, one can do better (though we won’t show it):

Fact 4.80. If L/ K is Galois and in characteristic 0 thenref = [L : K|. If L/K is Galois and in characteristic
p then refp™ = [L : K| (where n is an invariant called the defect).

Proposition 4.81 (3.3.1). Suppose (K,v) is a valued field. Suppose L/K is Galois (in particular, finite);
let G = Aut(L/K). Let w be an extension of v to L. Let H = stab(O,) = {0 € G : 00, = O, } < G; let
F=L"={a€L:0(a)=a foralloc € H}. Then

1. w is the unique extension of w [ F to L.
2. w | F is an immediate extension of v.
Proof.

1. Let w’ be another extension of w [ F to L. Since L/F is normal, the conjugacy theorem yields some
o € Auwt(L/F) = H such that 0O, = O,. But H = stab(Oy). So Oy = O

2. Residue fields We first show that (F,w | F) has the same residue field as (K,v). Suppose a €
Ouwir = Oy NF. We want ¢ € O, such that @ =¢; i.e. such that a — c € M,,.

Let w = wy,ws, ..., w, be the non-equivalent extensions of v to L. Let
O, = Oy,
0, =0, NF

Now, perhaps O] = O’ for some i # j (though necessarily O; # O; for i # j). However:
Claim 4.82. O} # O} for j # 1.

Proof. Well, 01 = O, NF = Oyr. If O} = O] then w; [ F =w [ F. So w; and w both extend
w [ F,and j =1 by part (1). 0 Claim 4.82

It follows that there is .,
be ()0
i=1
such that

e b—ac M, =M,
ebe M, forje{2,...,r}
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Note that b is not yet our desired ¢ since we don’t have b € O,; we just have that b is in every
extension of O, to F.

Let b= b1,bs,...,b; be the distinct conjugates of b under G; let
c=by+by+---+b el =K

since L/K is Galois.

Claim 4.83. b; € M, forallje{2,...,0}.

Proof. Fix j € {2,...,0}. Let 7 € G satisfy 7(b) = b;. Since b € F = L and b # 7(b), we
get that 7 ¢ H. So 77! ¢ H, and 771(0,,) = O, for some i € {2,...,7}. So 70, = Ou; s0

TMy;, = M. But b€ M,,,; so 7(b) € M,,, and b; € M,,. O Claim 4.83
So
c= b +bo+---+bpcO,NK=0,
~ ——
eEMy, EMy,
So
a—c=a—by—by—---—by € My
——
EMy EMy

Hence (F,w | F) and (K, v) have the same residue field.

Value grapes We now show that I'y,;p = I'y. It suffices to show that the non-negative elements are
the same. Let a € O, N F; we want ¢ € K with w(a) = w(c).
As before, we can find b € O, N F with
(a) b—1€ M,.
(b) 7(b) € My, for all T € G\ H.
So for all 7 € G\ H we have w(7(b)) > 0.
Claim 4.84. There is N > 0 such that w(b™a) # w(r(bNa)) for any 7 € G\ H.

Proof. Well, w(bNa) = Nw(b) + w(a) = w(a). Since b — 1 € M,,, we get that b ¢ M,,, and

w(b) = 0. Now

w(r(b™a)) = Nw(7(b)) +w(r(a))
But G\ H is finite and w(7(b)) # 0, so there is such an N. O Claim 4.84
Consider by = bNa, by, ..., b, the distinct conjugates of b~ a under G.

Case 1. Assume w(b;) > w(by for all j > 1. Fix j > 1; write b; = 7(b1) with 7 € G. Then 7 ¢ H
since by = bNa € F = LY. Then

w(by) = w(r(br)) = w(r(b™a)) # w(bi)
by the claim. So w(b;) > w(by) for all j € {2,...,7}. Let
c=b +by+- - +becK=1LY

v(e) = w(c) =w(by + bz + -+ by) = w(br) = w(b™a) = Nw(b) + w(a) = w(a)

and we are done.
Case 2. Suppose t > 0 of the b; have w(b;) < w(b1). Let

-1

c= Z bil"'bit+1 Z bllbzf c K

1<y < <igq1 <L 1<y <<ty

Then G fixes ¢ since ite permutes the by,...,by. An argument is given in the text that
w(c) = w(a). O Proposition 4.81
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Aside 4.85 (Correction to question 4 on assignment). Suppose L/K is a Galois extension of degree n. By the
primitive element theorem, we may take L = K(a). Let P(z) € K[x] be irreducible with P(a) = 0. Suppose v
is a valuation on K; we may assume P € O,[z]. If P € K,[z] is irreducible and of degree n then e(L/K) = 1
and v has a unique extension to L.

Proof of Theorem 4.79. Let Oy, ..., O, be the non-equivalent extensions of O, to L. Let H = stab(0;) <
G = Aut(L/K). Foreachi € {1,...,r} welet 0; € G be such that 0;01 = O;. (These exist by the conjugacy
theorem.)

Claim 4.86. o1,...,0, are distinct representatives of the cosets of H in G.

Proof. Suppose o € G; then 0O; = O; for some i € {1,...,7}. So 0;1001 = O, and 0;10 € H; so
oc€o;H. So

G= O O'Z'H
i=1

Furthermore, if 7 # j then
0'1'01 = 01 # Oj = Jjol

So aj*lai ¢ H,and 0;H # 0, H. [0 Claim 4.86

Let F = L¥. We have a chain of valued fields (K, O,) C (F,0,NF) C (L,0;). (Since L/F is normal,
e(L/F) and f(L/F) make sense with respect to O; N F.) We know that

G| _ [L: K]

r r

e(L/F)f(L/F) < [L: F]=|H| =

re(L/F)f(L/F) < [L: K]

But by the previous proposition we have that (F,O; N F) D (K,O,) is an immediate extension; so
e(L/K) = e(L/F)
f(L/K) = f(L/F)
and ref <[L: K]. O Theorem 4.79

5 Henselizations
Some remarks:
Remark 5.1.

1. Suppose (K, O,) C (L,O,). This means that O, N K = O,; hence we get ¢: I', — I', such that the
following diagram commutes:

K* —S5 L
Lk
r, — 1T,

We identify T", with its image under ¢ in order to view I', < T'y,; after this identification we get
w | K =w.
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2.

Suppose (L, w;) and (L,wy) are both extensions of (K,v). Then Ty, and Ty, both contain T, as a
subgrape, and wy [ K = v = wy [ K. Then w; and ws being equivalent means O,,, = O,,; i.e. we have
an isomorphism ¢: I'y,, — I'y,, of divisible abelian grapes such that the following diagram commutes:

L*
BN
wy
Ty, —— Ty,
Ly
TODO 4. Parse the following.

When L = K? there is a unique canonical isomorphism of ordered abelian grapes o: I'y,, — Ty, such
that ¢ [ T, = id since T, = +(T',) (plus torsion-free). So if o € Ty, then there is n such that ny € T'y;

/

then ny(y) = p(ny) = ny. But in T, there is a unique ' such that ny' = nvy; so p(y) =+

Definition 5.2. (K,v) is Henselian if v has a unique (up to equivalence) extension to K28,

Remark 5.3.

1.
2.

3.

This is equivalent to requiring that for any finite extension L/K, there is a unique extension of v to L.
If (K,v) is Henselian and (L, w) is an algebraic extension of (K,v) then (L, w) is Henselian.

Since the number of non-equivalent extensions is bounded by the separable degree, we get that (K, v) is
Henselian if annd only if v has a unique extension to K*°P. (In general, any valuation on K*°P extends
uniquely to K& because [K8 : K5°P] . = 1.)

Every separably closed valued field is Henselian. The converse is false: we’ll see that Q, is Henselian
but not algebraically closed. (In characteristic 0, separably closed is equivalent to algebraically closed.)
Note that the value grape of Q,, is Z, which is not divisible; this is a quick proof that Q, is not divisible.

Theorem 5.4 (4.1.3). Suppose (K, v) is a valued field. Then the following are equivalent:

1.

2.

4.

(K,v) is Henselian.

Hensel’s lemma holds: given P € O,[z] and a € K,, such that P(a) =0 and f/(a) # 0, there is a € O,
with @ = a and P(a) = 0.

Hensel-Rychik holds: given P € O,lz] and b € O, such that v(P(b)) > 2v(P'(b)), there is a € O, such
that P(a) =0 and v(b— a) > v(P'(b)).

Hensel-Rychik holds for separable polynomial P € O,|x].

Corollary 5.5. Suppose (K,v) is Henselian and F C K has F**P N K = F. (i.e. F is separable closed in
K.) Then (F,v | F) is Henselian.

So (Qp, vp) is Henselian, and Qe n Q, is Henselian as it is algebraically closed in Q,,. This is an example
of a classical Henselian valued field that is not complete.

Lemma 5.6. Suppose (K,O,) is a value sfield and P € Oy[x]. Then there are Py, ..., Py, € O,[z] irreducible
in K[z] such that P = Py -+ Pp,.

Proof. Let P = Py --- P, be the irreducible decomposition of P in Kz]. For each i let b; € K be the
coefficient of Q; of least value. So @; = b;Q; where Q; € O,[z]. So

P:ble"'bméjl Q\Qéjm
—_ ~—~
Pl P2 Pm
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It remains to check that by ---b,, € O,. But

o(br, - bm) = 0(b1) + -+ 0(bm) = w(Q1) + -+ +w(@m) = w(Q1Q2 - Q) = w(P) = v(a) 20

where w is the Gaussian extension of v to K (x) and ais a coefficient of P of least value; in particular, since
a € O,, we get that v(a) > 0. O Lemma 5.6

Proof of Theorem 5.4.

(1) = (2) Supposef (K,v) is Henselian. We show that Hensel’s lemma holds. Suppose P € O,[z] and
a € K, satisfy P(a) =0 and Pl(a) # 0. We wish to find a € O, such that @ = o« and P(a) = 0. By
the lemma we may assume that P(z) is irreducible in K[x]. We will prove that deg(P) = 1.
Factor P(x) in K*8:

n

P(z)=c]](z—b)

i=1

where ¢ € O, is the leading coefficient of P and by,...,b, are the roots of P in K*2. By Henselianity
there is a unique extension v of v to K2,

Claim 5.7. by,...,b, € O3.
Proof. Well, by, ...,v, are conjugate by Aut(K*#/K). Fixi,5 € {1,...,n}; pick 0 € Aut(K*#/K)

such that b; = ob;. Then
0(bi) = v(ob;) = (Vo o)(b;) = V(b))

since ¥ o ¢ and ¥ are equivalent by Henselianity (since they’re both extensions of v to K*8) and have
the same value grape; by a previous remark about extensions to K8, this forces equality. So

0(b1) = 0(b2) = --- = 0(bn) € 'y

Let v =0(b1). Let b € K& satisfy b" = c. Since v(c) > 0, we get that ¥(b) = Lv(c) > 0, and hence
that b € O5;. But now

P(z)=b"[J(z—b:) = H(\b:f_/—bbi)
i=1 i=1 €Oy

Subclaim 5.8. bb; € O3.

Proof. Note that ¢by - - - by, is the constant term of P € O,[z] and ¢ € O,. So

0 <0(chy---by) =0(c) +0(by) + -+ 0(bn) = v(c) + ny = no(b) + ny = n(v(b) + )

So v(b) +~v > 0. So
0(bb;)o(b) +0(b;) =0(b) +v >0

and bb; € Op. [J Subclaim 5.8

We can now take residues to find that

P(x) = [ [ (bx — bbs)
i1
Since P is not constant, we get that b# 0. So b€ OXF. So b; = § - bb; € O5. O Claim 5.7
Taking residues, we find
P(z) = EH(J; —b;)
i=1

N —_ — 71 —
So by,...,b, are the roots of P in Kzg; say o = by.

42



Claim 5.9. Any factor G of P in K,[x] must have « as a root.

Proof. Let u be aroot of G; so u = b;. Let 0 € Aut(K*#/K) be such that ob; = by. Lift G to g € O,[x].
Then
g(b1) = g(ob;) = ag(bi) € oMz = Mg, = My

since g € K[z] and o € Aut(K*2/K). So

[@p]
o
=
s
Nl
m

&)
o
o
o+
<)
[e]
Q
|
<)
wn
IS}

Na)

—
(=
S

S—
m
<
wn
IS}

O Claim 5.9

Hence

where o € K. But « is a simple root, so n = 1. So P = ¢(x — b) for some ¢,b € O, and P(b) = 0. So

P =¢(z —b) with b= a.
0 Theorem 5.4
TODO 5. Missing stuff

We saw that given a value sfiel s(K,v) we can extend v to w on K*P. If we then let K" = Fix(stab(O,,))
and v" = w | K", then (K", v") is the Henselization. This satisfies a universal property: if (K’,v") D (K,v)
is Henselian then there is a unique embedding f: K" — K’ such that f(O,) = O, N f(L) and f | K = id.
In diagram:

(K", ok)y

(;T ;

7U)

Proposition 5.10. Henselizations are immediate.

(K, 0")

Proof. We wish to show that (K", v") is an immediate extension of (K,v).
TODO 6. “an”?

Recall that v" = w | K" where w is an extension of v to K®P.
Suppose L C K*®°P is a finite Galois extension of K. We then have the following diagram:

K «———— L

ET - QT

Kh KN L
QT %
K
We let H = Aut(L/K); so staby (Owir) = {0 € H: 00y = Oui1 }-
Claim 5.11. staby (Oy ) = {0 | L: 0 € stab(O,) < Aut(K*P/K) }.
Proof.
(2) Well, L/K is normal, so for any o € Aut(K*P/K) we have (L) = L. If 0 € stab(O,,) then o [ L €

H = Auwt(L/K) and (o | L)(Owi) = (0 | L)(Ow N L) = Oy N L.
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C) Suppose 7 € H has 7O,,1, = Oy Extend 7 to o € Aut(K*P/K).sNow 0O,, is another extension of
! r

O - By the conjugacy theorem there is p € Aut(K*°P/L) such that poO,, = O,,; hence po € stab(Oy).

But (po) [ L=0o [ L=r. O Claim 5.11

By the claim, it follows that K" N L = Fix(stab(Oy1)), since K" = Fix(stab(O,,)). By a previous
proposition, we get that (K"NL,w | (K"NL)) is an immediate extension of (K, v). (Note that w [ (K"NL) =

h
o™ | L.)
But any growth in the residue field or value grape from (K, v) to (K", v") would be witnessed by a finite
extension. So (K" v") is an immediate extension of (K,v). O Proposition 5.10

Ezample 5.12. Consider (Q,v,) C (Qh,v;}) C (Q*8NQyp,v,) C (Qp,vp). In fact Q" = Q¥ N Q,.

6 p-adically closed fields

We now abandon the textbook. A good reference for this material is “Formally p-adic fields” by Prestel and
Roquette.

The goal is to understand Q, axiomatically or abstractly.

Allegorically, C is an instance of an algebraically closed field: a field that has no proper algebraic extensions.
An intrinsic (in fact, first-order) characterization is that every non-constant polynomial has a root.

Consider also separably closed fields: those that have no proper algebraic separable extension. This too
has an intrinsic first-order axiomatization.

Also in this vein, we have that R is an instance of a real closed field. We first define a formally real field
to be a field that admits a linear ordering compatible with the field structure; we then define a real closed
field to be a field with no proper algebraic formally real field extension. A result of Tarski yields an intrinsic
first-order axiomatization.

Can we do a similar study on p-adic fields? It turns out we can.

Definition 6.1. Fix a prime p. A valued field (K, v) is formally p-adic or p-valued if
1. K, =F,.
2. v(p) is the least positive element of T',,.
Note that this definition is first-order.
Proposition 6.2. The second condition is equivalent to requiring that M, = pQO,,.
Proof.

(=) Suppose 0 # a € M,. By the second condition we have v(a) > v(p). Hence v(a) = v(p) + v(b) for
some b € O, and a = ubp for some u € O; so a € (p)O,.

(<= ) Suppose M, = (p)O,; suppose a € K has v(a) > 0. Then a € M,, and a = bp for some b € O,; so
v(a) = v(b) + v(p) > v(p). So v(p) is indeed the least positive element of T',,. O Proposition 6.2

Remark 6.3. If (K, v) is a p-valued field, then char(K) = 0. Indeed, if we had char(K) = p, then p = 0 and
v(p) = oo, contradicting the second condition; if we had char(K) = ¢ for ¢ # p, then following the maps
7 — O, — F,, we find that g = 0 in F,, a contradiction.

Fact 6.4. In general for a valued field we have (char(K),char(K,)) must take one of the following forms:
(0,0), (p,p), or (0,p).

Ezample 6.5.
1. (Q,vp).
2. (Qp,vp).
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3. Suppose (K,v) is a p-valued field. Extend v to w on K(x) with Ty, =T, @ Z with the lexicographical
ordering, and with w(z) = (0,1); then we have I';, — T'y, by 7 — (v,0). So, by earlier results, we
get that K,, = K, = F,, and w(p) = (v(p),0) is the least possible element of T',,. So (K(z),w) is a
non-classical p-valued field.

4. Every immediate extension of a p-valued field is p-valued.

5. Any restriction of a p-valued field is p-valued.

Suppose (K, v) is p-valued. Let Zv(p)) = (v(p)) < T',; this is a copy of Z in T',,.
Lemma 6.6. Zv(p)) is convez in T,,.

Proof. Suppose nv(p) < v < (n+ 1)v(p) for some v € T',,. Then 0 < v —nv(p) < v(p), contradicting the
requirement that v(p) be the least positive element of T,. 0 Lemma 6.6

Definition 6.7. A p-valued field (K,v) is p-adically closed if (K,v) has no proper p-valued algebraic
extension.

This is exactly in analogy with algebraically closed fields and real closed fields, and somewhat in analogy
with separably closed fields.

Remark 6.8. These exist by Zorn’s lemma. Indeed, let S be the set of all p-valued algebraic, ordered by
inclusion. This is closed under unions of chains; by Zorn’s lemma there is a maximal element, which will be
p-adically closed.

We’d like a first-order (intrinsic) axiomatization.
Proposition 6.9. Every p-adically closed field is Henselian.

Proof. Suppose (K, v) is p-adically closed. Let (K" v") be its Henselization. This is an immediate algebraic
extension, and hence is p-valued. Since (K,v) is p-adically closed, we get that K" = K i.e. (K, v) is Henselian.
O Proposition 6.9

Remark 6.10. (K, v) is p-valued. Then Zv(p) is a convex subgrape. So I', /Zv(p) has an induced ordering.
(One checks that v 4+ Zv(p) < a + Zov(p) if and only if v < « is well-defined and endows T',,/Zv(p) with the
structure of an ordered abelian grape.) For example, if T, = Z, then T, /Zv(p) = {0 }.

We will show that if (K, v) is p-adically closed then I'y,/Zv(p) is divisible.

Lemma 6.11. Suppose (K,v) is p-valued. Suppose L/K is a finite extension and w is an extension of v to
L. Then

1. Ty, has only finitely many positive elements < v(p). (Say j-many.)

2. Let m € L be such that w(m) is the least positive element of I'y,. (This exists by part (1).) Then
Zw(m) N Ty, = Zov(p). So Ty, /Zv(p) — Ty /Zw(rw).
3. €(Ow/0y) = [T : To] = j - [Dw/Zuw(r) : Ty /Zv(p)].
Proof.
1. f0< B8 < B <v(p),then0< p —p<p <wv(p);sof —5¢T,, and B+T, # ' +T,. Hence the

number of positive elements of ', that are < v(p) is at most [['y, : T',]; in particular, we get that there
are finitely many such elements.

2. Since w(w) is least positive, we have seen that Zw(w) is convex in T'y,. But v(p) # Zw(rw); so
v(p) € Zw(rw), and v(p) = kw(w) for some k > 0. So Zv(p) C Zw(w) NT,,.

For the converse, suppose v € Zw(w) NT,,. Then —ky < v < kvy. But —kv, ky € kZw(w) = Zv(p). So,
by convexity of Zv(p) in T, we get that v € Zv(p).

So Zw(w) N T, = Zv(p), as desired.
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3. Note that w(n), 2w(w), ..., kw(w) = v(p) are precisely the positive elements of T',, that are < v(p), by
convexity of Zw(w) in T'y,. So j = k.
By part (2), we get an induced embedding T, /Zv(p) < T /Zw (7). We thus get the following lattice:

L'y

Zw(m) + T,
Z ()/ \I‘
\Z /

(p)
By the second isomorphism theorem, we get that
(Zw(m) +Ty) /Ty = Zw () /Zo(p) = Zuw(w)/jZuw(T)
so [Zw(m) + Ty, : T] = [Zw(7) : jZw(7w)] = j. By the third isomorphism theorem we get
Lo/(Zuw(m) +Ty) & (Do /Zao(r) ) /((Zao(m) + D) /Zav(m) ) = (Do /Zaa(m) ) /(T 20(p))
Hence [I'y, : Zw(w) + T] = Tw/Zw(x) : Ty, /Zv(p)]. So
e(Ow/Oy) = Iy : I'y] = [Ty : T/ (Zw(r) + T[T/ (Zw(7) + Tw) : To] = j[lw/Zw(r) : T /Zv(p)]
as desired. O Lemma 6.11

Proposition 6.12. Suppose (K,v) is p-adically closed. Then T, /Zv(p) is divisible.

Proof. Suppose not; we will construct a proper algebraic p-valued extension of (K, v).
Ezercise 6.13. T, /Zv(p) is not g-divisible for some prime g.

Pick v(c) + Zv(p) € Ty /Zv(p) such that there is no o € ', /Zv(p) with ga = v(c) + Zv(p). (Here c € K.)
Consider L = K (t) where t? = ¢. Extend v to w on L. Note that qu(t) = w(c) = v(c); so w(t) € Ty, \ Ty

Now L/K is a proper algebraic extension; we show that (L, w) is p-valued. By Lemma 6.11, we have that
j=H{7v €Ty :0<~vy<wu(p)} is finite. Letting m € L be such that w(r) is the least positive element of I'y,,
we get that Zv(p) = jZw(w) and Zw(w) NI, = Zv(p); furthermore that [Ty, : T'y] = j[T'y/Zw(n) : Ty /Zo(p)].

Claim 6.14. j = 1; so w(w) = v(p) is the least positive element of T, .
Proof. In T, /Zw(7), we have

q(w(t) + Zw(r)) = qu(t) + Zw()
[0

=v(c) + Zw(w)

= v(c) + Zu(p)

€ ['y/Zo(p)
T, /Zv(p) C Ty /Zv(w), with g on the left and « on the right.
TODO 7. What?

Since a # 0 in (Fw/Zw(w))/(Fv/Zv(p)). But ga = 0; so (Fw/Zw(ﬂ))/(Fv/qu(p)) has an element of
order ¢ (represented by «). So
Jq < j[lw/Zw(r) : Ty /Zo(p)] = [Ty : Ty < [L: K] =¢

So j =1, as desired. O Claim 6.14
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So w(7) = v(p) is the least positive element of T',. But e(0,,/O,) = [T : Ty] = [L: K]. So [K, : K,] = 1.

So K, = K, =F,. So (L,w) is p-valued. O Proposition 6.12

Theorem 6.15. Suppose (K, v) p-valued. Then (K,v) is p-adically closed if and only if it is Henselian and
Ty, /Zv(p) is divisible.

Proof.
(=) By Proposition 6.9 and Proposition 6.12.
O Theorem 6.15
TODO 8. Missing stuff. (Mostly proof of the above.)
FEzxzample 6.16.

1. (Qp,vp) is p-adically closed: it’s p-valued, it’s Henselian by completeness, and I, /Zv(p) = Z/Z = 0 is
divisible.

2. (Q,vp)" = (Q, NQ*&,v,) is p-adically closed: it’s p-valued as the restriction of a p-valued field, it’s
Henselian as it is algebraically closed in Q, (which is Henselian), and I',, = Z.

1
K= Ua(())
m >0 N——/——
Laurent series

3. Let

These are the Puiseauz series over Q,. We extend v, on Q, to K by

U(iaitvz> = (%,vp(an)) eQxz

i=n
where a,, # 0 and Q x Z is given the lexicographical ordering.

e This is p-valued. Indeed, v(p) = (0,v,(p)) = (0,1) is the least positive element of Q x Z. Further
observe that -
Z ait% e 0,

if and only if n > 0 or n = 0 and acO,, = Z,; similarly,

Zaltﬁ € MU
if and only if n > 0 or n =0 and a, € M,, = pZ,. Hence O,/ M, = Z,/pZ, =TF).
e I',/Z = Q is divisible.

e It is Henselian. To see this, one examines the following diagram:

Q,((t%)) ~== @,

w Jresvp

Fyp
> .
w <Z ait7it> =n
i=n
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Proposition 6.17. If (L,w) is p-adically closed and K C L is relatively algebraically closed, then (K,w | K)
1s p-adically closed.

We first need another tool: p-adic expansions in p-valued fields.
Suppose (K, v) is p-valued and a € O,,. Let ag =a € Fp,; we regard 0 < ap <p—1. Soa —ag € O,, and
in particular

a—ag=a—ayg=a—ag=0

and a — ag = M, = (p)O,,. So “;% € O,. Let

Then

and

(2= s

so v(a — ag — a1p) > 2v(p).

In general for any m we get ao, ..., am—1 € Fp, such that v(a —ap—a1p— asp® —- = am_1p™ 1) > mu(p).
So the z;’:ll a;p’ are successively better approximations to a as m — oco. If we squint hard enough, we can
kind of pretend that we’re approximating elements of O, by p-adic integers:

oo
Zy > Zaipi ~acO,
i=0

Lemma 6.18. Suppose (K, v) is p-valued and (L,w) is a p-valued Henselian extension. Suppose a € L and
n € N such that w(a) € T',. Then there is c € K and v € Q)5 such that a = cu™.

Proof. By assumption we have w(a) = w(b) € I, for some b € K. If we prove ¢ = cu™ for some ¢ € K then

a = beu™, and be € K, so we're done.

We may thus assume that a € OJ. Let ¢ € Z be such that w(a — ¢) > muv(p) (where we fix m such
that mv(p) > 2v(n)). We identify Z with Zv(p) C I'y, C T'y; i.e. we normalize so that v(p) = 1. So
w(a —¢) > m > 2v(n); so

(since ¢ = Z:';Ol aip’ and ag =@ # 0 since a € OF; so v(c) = 0 since pfc.) Let p(x) = 2™ — <. Then

w(p(1)) = m
> 20(p(1))
w(p'(1)) =v(n)

By Hensel-Rychik in (L, w), we now get a root v € O,, with @ =1 =1 and u € O; in particular, u" = 2.
0 Lemma 6.18

Corollary 6.19. Suppose (K,v) is p-valued and (L,w) is a p-valued Henselian extension. Suppose further
that K is relatively algebraically closed in L. Then Ty, /T, is torsion-free.

Proof. Suppose b € L satisfies nw(b) € T'y; i.e. w(b) is n-torsion in 'y, /T, Let a = b™ € L; so w(a) = nw(b) €
T',. By the previous lemma, we get that a = cu™ for some ¢ € K and some u € O with w(u) = 0. So b" = cu™,
and (%)n =ceK. SoleLnNK" = K;sow(b)=wb) —wu)=w(l)el,. O Corollary 6.19
Corollary 6.20. Suppose (L,w) is p-adically closed, K C L, and K¢ N L = K. Then (K,w | K) is
p-adically closed.
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Proof. Let v=w | K. Then (K,v) is p-valued as a restriction of (L, w); it is Henselian since (L, w) is and
K*& N [ = K. It remains to check divisibility of ', /Z. But T, /Z is divisible, and

(rw/z)/(r/z) = Tu/r,
which is torsion-free.
Claim 6.21. If G is a divisible abelian grape, H < G, and G/H is torsion free, then H is divisible.

Proof. Suppose h € H. By divisibility of G there is g € G with ng € H. So g is torsion in G/H, and G/H is
torsion-free; so g € H. So H is n-divisible. O Claim 6.21

So T',,/Z is divisible. O Corollary 6.20

7 Completeness and decidability of Q,

Let ACF( be the axioms of algebraically closed fields of characteristic 0.

Fact 7.1 (Tarski, Completeness of ACFy). Suppose o is a first-order statement. Then o is true in C if and
only if o is a consequence of ACFy.

In particular, if ¢ is true in C, then it is true in every algebraically closed field of characteristic O.
Let RCF be the axioms of real closed fields.

Fact 7.2 (Tarski). Suppose o is a first-order statement. Then o is true in R if and only if o is a consequence
of RCF.

We get a similar fact for separably closed fields of characteristic p, SCF,; this is due to Ersov.

From these facts, we get decidability of C and R; i.e. given a first-order statement, one can decide whether
it is true in C or not. Likewise with R.

Godel’s incompleteness theorem implies that the sae is not true of (Z,0, 1,4, —, X).

We will explain how the axios of p-adically closed fields is a complete axiomatization of Q.

First, a vague description of first-order statements in a valued field (K, v):

e Finitary.
e Involve:

- +,—,%,0,1in K.
- +,—,%,0,1in K,.
- +,—,<0in I',.

— v and res,.
e Allow quantifying over elements (not subsets) of K, K,, and T',.
e Allow logical operations: A, V, =, —, and .

Ezample 7.3. We want axioms saying I',,/Z is divisible. (We have normalized v(p) = 1 here.) Fix m > 1; we
want o, asserting that T',/Z is m-divisible. We let

Om =My eT,)BAeT)(MA—v=0)V(mA—y=1)V---V(mA—y=(m-1)))
Claim 7.4. T, /7 is m-divisible if and only if o, holds.
Proof.

(«<=) Clear.
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(=) Suppose T',,/Z is m-divisible. Suppose v € T'; pick A’ € " such that m\ — v =n = gm + r for some
¢ and some 0 < r < m. Then m(\ —¢q) —y =r and 0 < r < m; so we may take A =X —q €T,,.

O Claim 7.4

Hence {0, : m > 1} expresses divisibility of T,.

Example 7.5. We want to axiomatize being p-valued:

o (v(p) > 0)AZAY(0 <~ <v(p)).
o Va(res,(z) =0Vres,(z) =1V ---Vres,(z) =p—1).
e p=0in K,.
Ezample 7.6. Suppose (K, v) is p-valued; we wish to express that (K, v) is Henselian. For m > 1, we will pick
Tm to express that for every polynomial p € O,[x] of degree m and every simple root p € K ,[z] there is a
lifting of the siple root to a root of p in O,. Then (K, v) will be Henselian if and only if {7, : m > 1} holds.
We define 7,,, to be the following statement:
Yag,...,an € K
Yo € K,

m

(/\v(ai) >0

=0

NGy, # 0
Nama™ + - +a5 =0
m@am—l_"_”._’_a—l#o)
—dbeK
(B:aAambm+m+a0:0)

Hence being a p-adically closed valued field is first-order axiomatizable in the language of valued fields.
We now introduce ultraproducts of valued fields. Suppose (K;,v;) are valued fields for i < w. We might
hope to define a product by

K =[] K

i<w

=]
i<w

v (KN =T

But K’ is not an integral domain, I'” is not an ordered abelian grape, and v’ is not a valuation.
However, if we mod out be the equivalence relation of being “almost everywhere equal”, then we do get a
valued field. We make this precise with the following definition:

Definition 7.7. An wultrafilter on w is some F C P(w) satisfying:
1.0 ¢ Fandw e F.
2. fU,VeFthenUNV e F.
3. fUecFand VOU thenV € F.
4. f U € F then one of U or w\ U lies in F.

If we omit the final axiom, we get the definition of a filter on w. We say an ultrafilter is non-principal if it
contains the Fréchet filter.

Exercise 7.8. An ultrafilter is principal if and only if it does not contain a singleton.
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Ezample 7.9. The Fréchet filter is given by U € F if and only if w \ U is finite.
Ezercise 7.10. The ultrafilters are precisely the maximal filters under C.

So, by Zorn’s lemma, there is an ultrafilter on w containing the Fréchet filter; i.e. there is a non-principal
ultrafilter on w.
We are now in a position to define ultraproducts of valued fields. Suppose (K;,v;) are valued fields for
i < w. Fix an ultrafilter & C P(w). Define
JF:II&
u

:HKi/N

i<w
where (a; 11 <w) ~ (biri<w)if{i<w:a;, =b}eclU. Wecall K* the ultraproduct of the (K;,v;) (with
respect to U). Then K* is a field under

[(ai:i<w)]+[(bi:i<w)]:
[(a; s i <w)][(b; i < w)]

To see that addition is well-defined, suppose

(a1 11 <w)] = [(a) 17 < )]

[(b; 11 <w)] = [0 : 1 <w)]
Then I ={i<w:a;=a;} N{i<w:b =0} €U as the intersection of elements of U. But for i € I we
have a; + b; = a} + bl; so [(a; + b; 1 i <w)] = [(a + b} 1 i < w)].
Remark 7.11. Every non-zero element of K* is invertible. Indeed, if [(a; : i <w)] #0then I = {i < w:a; =
0}¢U,and w\ I €U. Now let

b_{@41m¢1

0 else
Then [(b; : i < w)][(a; : i < w)] = [(aib; : i < w)]. But for i € w\ I we have a;b; = a;a; ' = 1. So, since
w\ I €U, we get that [(a;b; :i <w)]=1. So [(b; i <w)] =[(a; i <w)] L
We similarly get that I'* = ], T'; is an ordered abelian grape, where [(y; : i < w)] < [(A; 7 < w)] if
{i<w:y <N} el
Remark 7.12. T'* is linearly ordered. Indeed, if [(7y; : 4 < w)],[(A\i 14 < w)] € T, thenone of {i <w:7y; <A\ }
and {i <w:7y; >\ }isin U. Hence either [(7; 1 i <w)] < [N ri<w)]or [(yi:i <w)] > [(N:i<w)].

We also have
v K*\ {0} —>T"
[(a; i <w)] ¥ [( i <w)

where

0 else

v(a;) ifa;#0
- { (a:)
This defines a valuation on K*; one can check that
Oy = H Ovi
u
o = [[ R
u

We thus get a valued field (K*,v*).

We now come to ultrapowers:
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Definition 7.13. Suppose (K, v) is a valued field. We define the ultrapower of (K,v) to be

(K’ U)u = H(va)

u
i.e. the ultraproduct with (K;,v;) = (K,v).

If (K,v) is p-adically closed, then so is (K>v*). One could check the axioms; this also follows from the
following:

Theorem 7.14 (Lo§’s theorem). Suppose (K, v;) are valued fields for i < w. Let (K*,v*) be the ultraproduct
with respect to some ultrafiilter U. Suppose o is any first-order statement about valued fields. Then o holds in
(K*,v*) if and only if {i < w: o holds in (K;,v;)} €U.
Then (K, v)¥ is p-adically closed since being p-adically closed is first-order axiomatizable.
Remark 7.15. Suppose (K,v) is a valued field; let (K*,v*) = (K,v)". Then there is an embedding
(Kv) C (K*,v*) where
K — K*
a—[(a:i<w)]
'y = Ty
v (i <w)l

Under this identification we get O,- N K = O,,.
Remark 7.16. Suppose n < w. Let U = {I Cw:n € I}; this is a principal ultrafilter. Then

H(Kiv vi) = (Knv Un)

u

and in particular
(K,v)" = (K, v)

Recall that U is non-principal if and only if all cofinite sets are in ; the intuition is that if ¢/ is non-principal
then (K,v) C (K*,v*) is a very rich extension.
In particular, one can prove:

Fact 7.17 (Embedding theorem). Suppose (K,v) C (L,w) are p-adically closed fields. Let U be a non-
principal ultrafilter on w. Consider the ultrapower of (L, w):

(K,v) C (L,w) C (L,w)¥
Then for any countable p-valued extension (K',v") of (K,v), there is an embedding (K',v') < (L,w) over
(K,v).

The proof uses p-valued field theory plus basic model-theoretic properties of non-principal ultraproducts
(namely saturation).

Theorem 7.18 (Completeness of the theory of p-adically closed fields). Suppose o is a first-order sentence
in the language of valued fields, then o is either true in every p-adically closed field or false in every p-adically
closed field.

Sketch of proof. Suppose (Li,v1) and (Ls,vs) are p-adically closed; normalize so v1(p) = v2(p) = 1. Suppose
o is true in (L1, v1). We want to show that o is true in (Lg,v2). Since char(Ly) = char(Ls) = 0, we get that
QCLiNLy, withv; Q=03 [ Q= v,

Consider K; = Q8 N Ly with w; = v; | K1; so (Q, vp) € (K1,w1) C (Ly,v1).

Claim 7.19. (K7,w1) 2 (Q,v,) is immediate.
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Proof. Both are p-valued, so both residue fields are F,. Since K /Q is algebraic, we get that Iy, /T, =T /Z
is torsion. By Proposition 6.17, since K7 is algebraically closed in L1 and L is p-adically closed, we get that
K is p-adically closed; so I'y,/Z is divisible. So T'y,/Z is trivial, and Ty, = Z. 0 Claim 7.19

Claim 7.20. (K7, wn) is a Henselization of (Q,vp).
Proof. Well, (K;,w) is Henselian as it is p-adically closed. By the universal property, we have

(vip) < (@hvvz}:) c (K1,w1)

Since (Q, v,) C (K1, w1) is an immediate and algebraic extension, we get that so too is (Q",v!) C (K1, wy).

By ??, every p-valued Henselian field has no proper immediate algebraic extensions. So Q" = Kj.
0 Claim 7.20

We now have the following diagram:

(Ly,v1) (L2,v7)
QT QT
(K1, w1) (K2, w2)
r& /
(Q,vp)

with K3 = Q*& N L; are both Henselizations of (Q,v,). So, by uniqueness of Henselizations, we may assume
the following picture:

(L1,v1) (L2, v2)

C
o~
(K, w)
<]
(Q7 'Up)
with K, L1, Ly all p-adically closed; so K1 = Ko = K = Q8N L; = Q&N L.

We now begin to wave our hands. Suppose o is of the for VaIyp(x,y), where p(z,y) is “quantifier-free”;
i.e. is an algebraic valued-field-theoretic condition on x and .

Ezample 7.21. o(z,y) might be
o v(P(z,y)) > v(Q(z,y)) where P and @ are polynomials over Q,
e (v(P(z,y)) > 0) A R(res(P(z,y))) = 0 where R € F)[z], or
o P(x,y) #0.

We assume VzIyp(x,y) holds in (L, v1); we wish to show it holds in (Lg, vq).

Suppose a € Lo; we wish to show 3y¢(a,y) holds in (Lg,vs). Let K(a) = K(a)# N Ly; this is a countable
p-valued extension of (K, w), so we can apply the embedding theorem. Namely, we have p as in the following
diagram:

(Ly, v . (L2, v2)
QT \\‘p\\\\\‘ ST
(L1,v1) (K(a),v2)
\( | =
K,w



where U is any non-principal ultrafilter. Since Va3yp(x,y) holds in (L1, v;), Lod’s theorem yields that it also
holds in (Ly,vy)¥. In particular, 3y¢(p(a),y) holds in (L1, v1)¥. So there is b € LY such that (p(a),b) satisfy
(,0(.73, y) in (Llavl)u'

Now let F' = p(K(a)); so F is p-adically closed. Consider now F'(b), which is a countable p-valued
extension of F. We may again apply the embedding theorem to get 1 as in the following diagram:

I8 Y

QT " QT

Now (p(a), b) satisfy ¢(z,y) in (F(b),v1); s0 (1(p(a)),n(b)) = (a,n(b)) satisfy p(z,y) in (La,v2)"; i.e. Jyg(a,y)
holds in (Lg,v2)%. So, by Lo$’s theorem, we get that Jyp(a,y) holds in (La,vs). So VzIyp(r,y) holds in

(LQ,UQ).
If ¢ has more alternating quantifiers, one needs more applications of the embedding theorems.
[J Theorem 7.18

Corollary 7.22. Any first-order sentence true in Qp is a consequence of the azioms of p-adically closed

fields.

Proof. By Godel’s completeness theorem of first-order logic, if o holds in every p-adically closed field, then it
can be proven from the axioms. O Corollary 7.22

Hence, like C and R, we see that Q, is a decidable theory.
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